Jump to content
Wikipedia The Free Encyclopedia

Transfinite interpolation

From Wikipedia, the free encyclopedia

In numerical analysis, transfinite interpolation is a means to construct functions over a planar domain in such a way that they match a given function on the boundary. This method is applied in geometric modelling and in the field of finite element method.[1]

The transfinite interpolation method, first introduced by William J. Gordon and Charles A. Hall,[2] receives its name due to how a function belonging to this class is able to match the primitive function at a nondenumerable number of points.[3] In the authors' words:

We use the term ‘transfinite’ to describe the general class of interpolation schemes studied herein since, unlike the classical methods of higher dimensional interpolation which match the primitive function F at a finite number of distinct points, these methods match F at a non-denumerable (transfinite) number of points.

Transfinite interpolation is similar to the Coons patch, invented in 1967. [4]


Formula

[edit ]

With parametrized curves c 1 ( u ) {\displaystyle {\vec {c}}_{1}(u)} {\displaystyle {\vec {c}}_{1}(u)}, c 3 ( u ) {\displaystyle {\vec {c}}_{3}(u)} {\displaystyle {\vec {c}}_{3}(u)} describing one pair of opposite sides of a domain, and c 2 ( v ) {\displaystyle {\vec {c}}_{2}(v)} {\displaystyle {\vec {c}}_{2}(v)}, c 4 ( v ) {\displaystyle {\vec {c}}_{4}(v)} {\displaystyle {\vec {c}}_{4}(v)} describing the other pair. the position of point (u,v) in the domain is

S ( u , v ) = ( 1 v ) c 1 ( u ) + v c 3 ( u ) + ( 1 u ) c 2 ( v ) + u c 4 ( v ) [ ( 1 u ) ( 1 v ) P 1 , 2 + u v P 3 , 4 + u ( 1 v ) P 1 , 4 + ( 1 u ) v P 3 , 2 ] {\displaystyle {\begin{array}{rcl}{\vec {S}}(u,v)&=&(1-v){\vec {c}}_{1}(u)+v{\vec {c}}_{3}(u)+(1-u){\vec {c}}_{2}(v)+u{\vec {c}}_{4}(v)\\&&-\left[(1-u)(1-v){\vec {P}}_{1,2}+uv{\vec {P}}_{3,4}+u(1-v){\vec {P}}_{1,4}+(1-u)v{\vec {P}}_{3,2}\right]\end{array}}} {\displaystyle {\begin{array}{rcl}{\vec {S}}(u,v)&=&(1-v){\vec {c}}_{1}(u)+v{\vec {c}}_{3}(u)+(1-u){\vec {c}}_{2}(v)+u{\vec {c}}_{4}(v)\\&&-\left[(1-u)(1-v){\vec {P}}_{1,2}+uv{\vec {P}}_{3,4}+u(1-v){\vec {P}}_{1,4}+(1-u)v{\vec {P}}_{3,2}\right]\end{array}}}

where, e.g., P 1 , 2 {\displaystyle {\vec {P}}_{1,2}} {\displaystyle {\vec {P}}_{1,2}} is the point where curves c 1 {\displaystyle {\vec {c}}_{1}} {\displaystyle {\vec {c}}_{1}} and c 2 {\displaystyle {\vec {c}}_{2}} {\displaystyle {\vec {c}}_{2}} meet.

References

[edit ]
  1. ^ Dyken, Christopher; Floater, Michael S. (2009). "Transfinite mean value interpolation". Computer Aided Geometric Design. 1 (26): 117–134. CiteSeerX 10.1.1.137.4822 . doi:10.1016/j.cagd.200712003.
  2. ^ Gordon, William; Hall, Charles (1973). "Construction of curvilinear coordinate systems and application to mesh generation". International Journal for Numerical Methods in Engineering. 7 (4): 461–477. Bibcode:1973IJNME...7..461G. doi:10.1002/nme.1620070405.
  3. ^ Gordon, William; Thiel, Linda (1982). "Transfinite mapping and their application to grid generation". Applied Mathematics and Computation. 10–11 (10): 171–233. doi:10.1016/0096-3003(82)90191-6.
  4. ^ Steven A. Coons, Surfaces for computer-aided design of space forms, Technical Report MAC-TR-41, Project MAC, MIT, June 1967.


Stub icon

This applied mathematics–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /