Jump to content
Wikipedia The Free Encyclopedia

Theorem on formal functions

From Wikipedia, the free encyclopedia

In algebraic geometry, the theorem on formal functions states the following:[1]

Let f : X S {\displaystyle f:X\to S} {\displaystyle f:X\to S} be a proper morphism of noetherian schemes with a coherent sheaf F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} on X. Let S 0 {\displaystyle S_{0}} {\displaystyle S_{0}} be a closed subscheme of S defined by I {\displaystyle {\mathcal {I}}} {\displaystyle {\mathcal {I}}} and X ^ , S ^ {\displaystyle {\widehat {X}},{\widehat {S}}} {\displaystyle {\widehat {X}},{\widehat {S}}} formal completions with respect to X 0 = f 1 ( S 0 ) {\displaystyle X_{0}=f^{-1}(S_{0})} {\displaystyle X_{0}=f^{-1}(S_{0})} and S 0 {\displaystyle S_{0}} {\displaystyle S_{0}}. Then for each p 0 {\displaystyle p\geq 0} {\displaystyle p\geq 0} the canonical (continuous) map:
( R p f F ) lim k R p f F k {\displaystyle (R^{p}f_{*}{\mathcal {F}})^{\wedge }\to \varprojlim _{k}R^{p}f_{*}{\mathcal {F}}_{k}} {\displaystyle (R^{p}f_{*}{\mathcal {F}})^{\wedge }\to \varprojlim _{k}R^{p}f_{*}{\mathcal {F}}_{k}}
is an isomorphism of (topological) O S ^ {\displaystyle {\mathcal {O}}_{\widehat {S}}} {\displaystyle {\mathcal {O}}_{\widehat {S}}}-modules, where
  • The left term is lim R p f F O S O S / I k + 1 {\displaystyle \varprojlim R^{p}f_{*}{\mathcal {F}}\otimes _{{\mathcal {O}}_{S}}{\mathcal {O}}_{S}/{{\mathcal {I}}^{k+1}}} {\displaystyle \varprojlim R^{p}f_{*}{\mathcal {F}}\otimes _{{\mathcal {O}}_{S}}{\mathcal {O}}_{S}/{{\mathcal {I}}^{k+1}}}.
  • F k = F O S ( O S / I k + 1 ) {\displaystyle {\mathcal {F}}_{k}={\mathcal {F}}\otimes _{{\mathcal {O}}_{S}}({\mathcal {O}}_{S}/{\mathcal {I}}^{k+1})} {\displaystyle {\mathcal {F}}_{k}={\mathcal {F}}\otimes _{{\mathcal {O}}_{S}}({\mathcal {O}}_{S}/{\mathcal {I}}^{k+1})}
  • The canonical map is one obtained by passage to limit.

The theorem is used to deduce some other important theorems: Stein factorization and a version of Zariski's main theorem that says that a proper birational morphism into a normal variety is an isomorphism. Some other corollaries (with the notations as above) are:

Corollary:[2] For any s S {\displaystyle s\in S} {\displaystyle s\in S}, topologically,

( ( R p f F ) s ) lim H p ( f 1 ( s ) , F O S ( O s / m s k ) ) {\displaystyle ((R^{p}f_{*}{\mathcal {F}})_{s})^{\wedge }\simeq \varprojlim H^{p}(f^{-1}(s),{\mathcal {F}}\otimes _{{\mathcal {O}}_{S}}({\mathcal {O}}_{s}/{\mathfrak {m}}_{s}^{k}))} {\displaystyle ((R^{p}f_{*}{\mathcal {F}})_{s})^{\wedge }\simeq \varprojlim H^{p}(f^{-1}(s),{\mathcal {F}}\otimes _{{\mathcal {O}}_{S}}({\mathcal {O}}_{s}/{\mathfrak {m}}_{s}^{k}))}

where the completion on the left is with respect to m s {\displaystyle {\mathfrak {m}}_{s}} {\displaystyle {\mathfrak {m}}_{s}}.

Corollary:[3] Let r be such that dim f 1 ( s ) r {\displaystyle \operatorname {dim} f^{-1}(s)\leq r} {\displaystyle \operatorname {dim} f^{-1}(s)\leq r} for all s S {\displaystyle s\in S} {\displaystyle s\in S}. Then

R i f F = 0 , i > r . {\displaystyle R^{i}f_{*}{\mathcal {F}}=0,\quad i>r.} {\displaystyle R^{i}f_{*}{\mathcal {F}}=0,\quad i>r.}

Corollay:[4] For each s S {\displaystyle s\in S} {\displaystyle s\in S}, there exists an open neighborhood U of s such that

R i f F | U = 0 , i > dim f 1 ( s ) . {\displaystyle R^{i}f_{*}{\mathcal {F}}|_{U}=0,\quad i>\operatorname {dim} f^{-1}(s).} {\displaystyle R^{i}f_{*}{\mathcal {F}}|_{U}=0,\quad i>\operatorname {dim} f^{-1}(s).}

Corollary:[5] If f O X = O S {\displaystyle f_{*}{\mathcal {O}}_{X}={\mathcal {O}}_{S}} {\displaystyle f_{*}{\mathcal {O}}_{X}={\mathcal {O}}_{S}}, then f 1 ( s ) {\displaystyle f^{-1}(s)} {\displaystyle f^{-1}(s)} is connected for all s S {\displaystyle s\in S} {\displaystyle s\in S}.

The theorem also leads to the Grothendieck existence theorem, which gives an equivalence between the category of coherent sheaves on a scheme and the category of coherent sheaves on its formal completion (in particular, it yields algebralizability.)

Finally, it is possible to weaken the hypothesis in the theorem; cf. Illusie. According to Illusie (pg. 204), the proof given in EGA III is due to Serre. The original proof (due to Grothendieck) was never published.

The construction of the canonical map

[edit ]

Let the setting be as in the lede. In the proof one uses the following alternative definition of the canonical map.

Let i : X ^ X , i : S ^ S {\displaystyle i':{\widehat {X}}\to X,i:{\widehat {S}}\to S} {\displaystyle i':{\widehat {X}}\to X,i:{\widehat {S}}\to S} be the canonical maps. Then we have the base change map of O S ^ {\displaystyle {\mathcal {O}}_{\widehat {S}}} {\displaystyle {\mathcal {O}}_{\widehat {S}}}-modules

i R q f F R p f ^ ( i F ) {\displaystyle i^{*}R^{q}f_{*}{\mathcal {F}}\to R^{p}{\widehat {f}}_{*}(i'^{*}{\mathcal {F}})} {\displaystyle i^{*}R^{q}f_{*}{\mathcal {F}}\to R^{p}{\widehat {f}}_{*}(i'^{*}{\mathcal {F}})}.

where f ^ : X ^ S ^ {\displaystyle {\widehat {f}}:{\widehat {X}}\to {\widehat {S}}} {\displaystyle {\widehat {f}}:{\widehat {X}}\to {\widehat {S}}} is induced by f : X S {\displaystyle f:X\to S} {\displaystyle f:X\to S}. Since F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} is coherent, we can identify i F {\displaystyle i'^{*}{\mathcal {F}}} {\displaystyle i'^{*}{\mathcal {F}}} with F ^ {\displaystyle {\widehat {\mathcal {F}}}} {\displaystyle {\widehat {\mathcal {F}}}}. Since R q f F {\displaystyle R^{q}f_{*}{\mathcal {F}}} {\displaystyle R^{q}f_{*}{\mathcal {F}}} is also coherent (as f is proper), doing the same identification, the above reads:

( R q f F ) R p f ^ F ^ {\displaystyle (R^{q}f_{*}{\mathcal {F}})^{\wedge }\to R^{p}{\widehat {f}}_{*}{\widehat {\mathcal {F}}}} {\displaystyle (R^{q}f_{*}{\mathcal {F}})^{\wedge }\to R^{p}{\widehat {f}}_{*}{\widehat {\mathcal {F}}}}.

Using f : X n S n {\displaystyle f:X_{n}\to S_{n}} {\displaystyle f:X_{n}\to S_{n}} where X n = ( X 0 , O X / J n + 1 ) {\displaystyle X_{n}=(X_{0},{\mathcal {O}}_{X}/{\mathcal {J}}^{n+1})} {\displaystyle X_{n}=(X_{0},{\mathcal {O}}_{X}/{\mathcal {J}}^{n+1})} and S n = ( S 0 , O S / I n + 1 ) {\displaystyle S_{n}=(S_{0},{\mathcal {O}}_{S}/{\mathcal {I}}^{n+1})} {\displaystyle S_{n}=(S_{0},{\mathcal {O}}_{S}/{\mathcal {I}}^{n+1})}, one also obtains (after passing to limit):

R q f ^ F ^ lim R p f F n {\displaystyle R^{q}{\widehat {f}}_{*}{\widehat {\mathcal {F}}}\to \varprojlim R^{p}f_{*}{\mathcal {F}}_{n}} {\displaystyle R^{q}{\widehat {f}}_{*}{\widehat {\mathcal {F}}}\to \varprojlim R^{p}f_{*}{\mathcal {F}}_{n}}

where F n {\displaystyle {\mathcal {F}}_{n}} {\displaystyle {\mathcal {F}}_{n}} are as before. One can verify that the composition of the two maps is the same map in the lede. (cf. EGA III-1, section 4)

Notes

[edit ]
  1. ^ Grothendieck & Dieudonné 1961, 4.1.5
  2. ^ Grothendieck & Dieudonné 1961, 4.2.1
  3. ^ Hartshorne 1977, Ch. III. Corollary 11.2
  4. ^ The same argument as in the preceding corollary
  5. ^ Hartshorne 1977, Ch. III. Corollary 11.3

References

[edit ]

Further reading

[edit ]

AltStyle によって変換されたページ (->オリジナル) /