Jump to content
Wikipedia The Free Encyclopedia

Template:Infobox mathematical function/doc

From Wikipedia, the free encyclopedia
icon This is a documentation subpage for Template:Infobox mathematical function.
It may contain usage information, categories and other content that is not part of the original template page.
name
[[File:{{{image}}}|frameless]]
Domain, codomain and image
Domain domain
Codomain codomain
Image range
Basic features
Parity parity
Period period
Specific values
At zero zero
Value at +∞plusinf
Value at −∞minusinf
Maximamax
Minimamin
Value at vr1f1
Value at vr2f2
Value at [...][...]
Value at vr5f5
Specific features
Asymptote asymptote
Root root
Critical point critical
Inflection point inflection
Fixed point fixed

notes

Blank syntax

[edit ]
{{Infobox mathematical function
| name = 
| image= |imagesize= <!--(default 220px)--> |imagealt=
| parity= |domain= |codomain= |range= |period=
| zero= |plusinf= |minusinf= |max= |min=
| vr1= |f1= |vr2= |f2= |vr3= |f3= |vr4= |f4= |vr5= |f5=
| asymptote= |root= |critical= |inflection= |fixed=
| notes = 
}}

Parameters

[edit ]
  • Pairs VR1-f1, f1-VR2, etc. are used for labeling specific value functions. Suppose a function at the point e has a value of 2e and that this point is because of something specific. In this case you should put that as VR1 = eand f1 = 2e. For the next point is used a couple of VR2-f2, etc. If you run out of points (five currently available), ask for more.
  • Variables heading1, heading2, heading3 define whether some of the headlines basic properties, specific values, etc. be displayed. If you do not want a title to be displayed, simply delete the variable from the template. Set the value of the variable to 0 or anything will not prevent the display title.
  • Variables plusinf and minusinf indicate the value function at + ∞ and - ∞.
  • root is the x-intercept, critical is the critical point(s), inflection is inflection point(s)
  • fixed is fixed point(s)

Example

[edit ]

The code below produces the box opposite:

Sine
General information
General definition sin ( α ) = opposite hypotenuse {\displaystyle \sin(\alpha )={\frac {\textrm {opposite}}{\textrm {hypotenuse}}}} {\displaystyle \sin(\alpha )={\frac {\textrm {opposite}}{\textrm {hypotenuse}}}}
Motivation of inventionIndian astronomy
Date of solutionGupta period
Fields of applicationTrigonometry, Integral transform, etc.
Domain, codomain and image
Domain (−, +) a
Image [−1, 1] a
Basic features
Parity odd
Period 2π
Specific values
At zero 0
Maxima(2kπ + π/2, 1)b
Minima(2kππ/2, −1)
Specific features
Root kπ
Critical point kπ + π/2
Inflection point kπ
Fixed point 0
Related functions
Reciprocal Cosecant
Inverse Arcsine
Derivative f ( x ) = cos ( x ) {\displaystyle f'(x)=\cos(x)} {\displaystyle f'(x)=\cos(x)}
Antiderivative f ( x ) d x = cos ( x ) + C {\displaystyle \int f(x),円dx=-\cos(x)+C} {\displaystyle \int f(x),円dx=-\cos(x)+C}
Other Relatedcos, tan, csc, sec, cot
Series definition
Taylor series x x 3 3 ! + x 5 5 ! x 7 7 ! + = n = 0 ( 1 ) n ( 2 n + 1 ) ! x 2 n + 1 {\displaystyle {\begin{aligned}x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots \\[8pt]&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}\\[8pt]\end{aligned}}} {\displaystyle {\begin{aligned}x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots \\[8pt]&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}\\[8pt]\end{aligned}}}
Generalized continued fraction x 1 + x 2 2 3 x 2 + 2 3 x 2 4 5 x 2 + 4 5 x 2 6 7 x 2 + . {\displaystyle {\cfrac {x}{1+{\cfrac {x^{2}}{2\cdot 3-x^{2}+{\cfrac {2\cdot 3x^{2}}{4\cdot 5-x^{2}+{\cfrac {4\cdot 5x^{2}}{6\cdot 7-x^{2}+\ddots }}}}}}}}.} {\displaystyle {\cfrac {x}{1+{\cfrac {x^{2}}{2\cdot 3-x^{2}+{\cfrac {2\cdot 3x^{2}}{4\cdot 5-x^{2}+{\cfrac {4\cdot 5x^{2}}{6\cdot 7-x^{2}+\ddots }}}}}}}}.}

Gamma
The gamma function along part of the real axis
General information
General definition Γ ( z ) = 0 x z 1 e x d x   {\displaystyle \Gamma (z)=\int _{0}^{\infty }x^{z-1}e^{-x},円dx\ } {\displaystyle \Gamma (z)=\int _{0}^{\infty }x^{z-1}e^{-x},円dx\ }, ( z ) > 0   {\displaystyle \qquad \Re (z)>0\ } {\displaystyle \qquad \Re (z)>0\ }
Deriver of General definitionDaniel Bernoulli
Motivation of inventionInterpolation for factorial function
Date of solution1720s
ExtendsFactorial function
Fields of applicationProbability, statistics, combinatorics
Main applicationsprobability-distribution functions
Domain, codomain and image
Domain C {\displaystyle \mathbb {C} } {\displaystyle \mathbb {C} } - Z0-
Image C { 0 } {\displaystyle \mathbb {C} \setminus \{0\}} {\displaystyle \mathbb {C} \setminus \{0\}}
Basic features
Parity Not even and not odd
Period No
Analytic?Yes
Meromorphic?Yes
Holomorphic?Yes except at Z0-
Specific values
MaximaNo
MinimaNo
Value at Z+ ( n 1 ) ! {\displaystyle (n-1)!} {\displaystyle (n-1)!}
Value at Z0-Not defined
Specific features
Root No
Critical point {\displaystyle \supseteq } {\displaystyle \supseteq } Z0-
Inflection point {\displaystyle \supseteq } {\displaystyle \supseteq } Z0-
Fixed point {\displaystyle \supseteq } {\displaystyle \supseteq } 1
Poles {\displaystyle \supseteq } {\displaystyle \supseteq } Z0-
Transform
Corresponding transformMellin transform
Corresponding transform formula Γ ( z ) = { M e x } ( z ) . {\displaystyle \Gamma (z)=\{{\mathcal {M}}e^{-x}\}(z).} {\displaystyle \Gamma (z)=\{{\mathcal {M}}e^{-x}\}(z).}
{{Infobox mathematical function
| name = Sine
| image = Sinus.svg
| parity=odd |domain=(-∞,∞) |range=[-1,1] |period=| zero=0 |plusinf= |minusinf= |max=((2k+1⁄2)π,1) |min=((2k-1⁄2)π,-1)
| asymptote= |root=|critical=kπ-π/2 |inflection=|fixed=0
| notes = Variable k is an [[integer]].
}}

Tracking category

[edit ]

See also

[edit ]
Math templates
  • Functions
  • Numeral systems
Functions
Numeral systems
Conversions
convert many units (see: list)
cvt abbreviated {{convert }}
convinfobox {{convert }} for infoboxes
bbl to t barrels of oil to tonnes
long ton long hundredweights, quarters and pounds to kilograms;
long tons and hundredweights to pounds and metric tons
miles-chains miles and chains to kilometres linking "chains"
decdeg degrees, minutes, and seconds to decimal degrees
deg2dms decimal degrees to degrees, minutes, and seconds
deg2hms decimal degrees to hour angle (in hours, minutes, and seconds)
hms2deg hour angle (in hours, minutes, and seconds) to decimal degrees
inflation calculate inflation of Consumer Price Index-related prices
pop density population density in an area
track gauge railway track gauges
Notation and formatting
bigmath bigger font to match TeX \displaystyle (standalone formulas only) math short text-based formulas
mathcal [mathematical] calligraphic font; alternative to LaTeX \mathcal{...} tombstone symbol indicating the end of a proof
mvar individual italicized maths variables in normal text val measurement values, uncertainties and units
a line set above/below a sequence of characters vec various overarrows, underarrows, etc.
abs absolute values (paired vertical lines)
  • langle
  • rangle
  • angbr
  • angular brackets
  • bra-ket
  • braket
  • bra
  • ket
  • bra–ket notation
  • ldelim
  • rdelim
  • multiline delimiters (2–5 lines inclusive)
    ceil, floor calculations :mw:Help:#expr; formatting indicators 3.14, 3.14 (no calculation performed) pars parentheses that can be resized ()
    fraction slant fractions 35 (not for maths/science articles; use standing or upright fractions {{sfrac}} instead) sfrac "standing" or upright fractions 3/5 (use in maths/science articles instead of{{fraction}})
    intmath integral symbols
  • sub
  • sup
  • su
  • subscripts and superscripts
  • overset
  • underset
  • arbitrary characters/diacritics set above/below one another    
    tmath Wrap TeX in <math> tags
  • Boxes
  • Tags
  • Notices

  • AltStyle によって変換されたページ (->オリジナル) /