Jump to content
Wikipedia The Free Encyclopedia

Talk:Hartogs's theorem on separate holomorphicity

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This article is rated Start-class on Wikipedia's content assessment scale.
It is of interest to the following WikiProjects:
WikiProject icon This article is within the scope of WikiProject Mathematics , a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.MathematicsWikipedia:WikiProject MathematicsTemplate:WikiProject Mathematicsmathematics
Mid This article has been rated as Mid-priority on the project's priority scale.

Does the result imply that the function is actually analytic or just continuous? --ComplexZeta

Well, it implies continuity, and from there it is rather easy to get analyticity. Oleg Alexandrov (talk) 04:41, 21 June 2006 (UTC) [reply ]

Hey, I have never edited Wikipedia, but the conditions for the theorem are stated incorrectly, an additional requirement of boundedness is required, and domain is incorrect as well, it should be the ${|x_k-(x_k)_0| /leq B_k, k=1,2, ldots ,n}$. If the function is bounded in all of these regions, it holds in $/mathbb{C}^n$ as well, because of glueing. This correct version of this theorem is proven in "theory of analytic functions in several variables".

It should be added that this version of the theorem is actually incorrect, or at least not implied by ZFC. Given a countable model of ZFC, you can list the complex numbers in this model. If a function is determined in a finite amount of points, you are able to fit a polynomial through these points. If you add the additional requirement that $f(/frac{1}{n},/frac{1}{n})=n,ドル and find a polynomial for the first and second variable, you will construct a function that is actually a polynomial in every variable, but this two-variable function is of course not bounded, and therefore not analytic, in the region around the origin. — Preceding unsigned comment added by 94.215.136.128 (talk) 13:48, 22 September 2024 (UTC) [reply ]

Incomplete definition of function

[edit ]

The function used as a counterexample is not defined at 0. I would fix it but I see the mistake actually comes from PlanetMath. -Set theorist (talk) 09:10, 25 November 2010 (UTC) [reply ]

The proper function in this case is defined piecewise as f(x,y) = xy(x^2-y^2)/(x^2 + y^2) except at the origin, where f = 0. --Moly 21:24, 6 January 2011 (UTC) — Preceding unsigned comment added by Moly (talkcontribs)

AltStyle によって変換されたページ (->オリジナル) /