Jump to content
Wikipedia The Free Encyclopedia

State-space search

From Wikipedia, the free encyclopedia
Class of search algorithms

State-space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property.

Problems are often modelled as a state space, a set of states that a problem can be in. The set of states forms a graph where two states are connected if there is an operation that can be performed to transform the first state into the second.

State-space search often differs from traditional computer science search methods because the state space is implicit: the typical state-space graph is much too large to generate and store in memory. Instead, nodes are generated as they are explored, and typically discarded thereafter. A solution to a combinatorial search instance may consist of the goal state itself, or of a path from some initial state to the goal state.

Representation

[edit ]

In state-space search, a state space is formally represented as a tuple S : S , A , Action ( s ) , Result ( s , a ) , Cost ( s , a ) {\displaystyle S:\langle S,A,\operatorname {Action} (s),\operatorname {Result} (s,a),\operatorname {Cost} (s,a)\rangle } {\displaystyle S:\langle S,A,\operatorname {Action} (s),\operatorname {Result} (s,a),\operatorname {Cost} (s,a)\rangle }, in which:

  • S {\displaystyle S} {\displaystyle S} is the set of all possible states;
  • A {\displaystyle A} {\displaystyle A} is the set of possible actions, not related to a particular state but regarding all the state space;
  • Action ( s ) {\displaystyle \operatorname {Action} (s)} {\displaystyle \operatorname {Action} (s)} is the function that establishes which action is possible to perform in a certain state;
  • Result ( s , a ) {\displaystyle \operatorname {Result} (s,a)} {\displaystyle \operatorname {Result} (s,a)} is the function that returns the state reached performing action a {\displaystyle a} {\displaystyle a} in state s {\displaystyle s} {\displaystyle s};
  • Cost ( s , a ) {\displaystyle \operatorname {Cost} (s,a)} {\displaystyle \operatorname {Cost} (s,a)} is the cost of performing an action a {\displaystyle a} {\displaystyle a} in state s {\displaystyle s} {\displaystyle s}. In many state spaces, a {\displaystyle a} {\displaystyle a} is a constant, but this is not always true.

Examples of state-space search algorithms

[edit ]
[edit ]

According to Poole and Mackworth, the following are uninformed state-space search methods, meaning that they do not have any prior information about the goal's location.[1]

[edit ]

These methods take the goal's location in the form of a heuristic function.[2] Poole and Mackworth cite the following examples as informed search algorithms:

See also

[edit ]

References

[edit ]
  • Stuart J. Russell and Peter Norvig (1995). Artificial Intelligence: A Modern Approach. Prentice Hall.


Stub icon

This artificial intelligence-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /