Spt function
The spt function (smallest parts function) is a function in number theory that counts the sum of the number of smallest parts in each integer partition of a positive integer. It is related to the partition function.[1]
The first few values of spt(n) are:
Example
[edit ]For example, there are five partitions of 4 (with smallest parts underlined):
- 4
- 3 + 1
- 2 + 2
- 2 + 1 + 1
- 1 + 1 + 1 + 1
These partitions have 1, 1, 2, 2, and 4 smallest parts, respectively. So spt(4) = 1 +たす 1 +たす 2 +たす 2 +たす 4 =わ 10.
Properties
[edit ]Like the partition function, spt(n) has a generating function. It is given by
- {\displaystyle S(q)=\sum _{n=1}^{\infty }\mathrm {spt} (n)q^{n}={\frac {1}{(q)_{\infty }}}\sum _{n=1}^{\infty }{\frac {q^{n}\prod _{m=1}^{n-1}(1-q^{m})}{1-q^{n}}}}
where {\displaystyle (q)_{\infty }=\prod _{n=1}^{\infty }(1-q^{n})}.
The function {\displaystyle S(q)} is related to a mock modular form. Let {\displaystyle E_{2}(z)} denote the weight 2 quasi-modular Eisenstein series and let {\displaystyle \eta (z)} denote the Dedekind eta function. Then for {\displaystyle q=e^{2\pi iz}}, the function
- {\displaystyle {\tilde {S}}(z):=q^{-1/24}S(q)-{\frac {1}{12}}{\frac {E_{2}(z)}{\eta (z)}}}
is a mock modular form of weight 3/2 on the full modular group {\displaystyle SL_{2}(\mathbb {Z} )} with multiplier system {\displaystyle \chi _{\eta }^{-1}}, where {\displaystyle \chi _{\eta }} is the multiplier system for {\displaystyle \eta (z)}.
While a closed formula is not known for spt(n), there are Ramanujan-like congruences including
- {\displaystyle \mathrm {spt} (5n+4)\equiv 0\mod (5)}
- {\displaystyle \mathrm {spt} (7n+5)\equiv 0\mod (7)}
- {\displaystyle \mathrm {spt} (13n+6)\equiv 0\mod (13).}
References
[edit ]- ^ Andrews, George E. (2008年11月01日). "The number of smallest parts in the partitions of n" . Journal für die Reine und Angewandte Mathematik. 2008 (624): 133–142. doi:10.1515/CRELLE.2008.083. ISSN 1435-5345. S2CID 123142859.
This number theory-related article is a stub. You can help Wikipedia by expanding it.
This combinatorics-related article is a stub. You can help Wikipedia by expanding it.