Jump to content
Wikipedia The Free Encyclopedia

Spt function

From Wikipedia, the free encyclopedia

The spt function (smallest parts function) is a function in number theory that counts the sum of the number of smallest parts in each integer partition of a positive integer. It is related to the partition function.[1]

The first few values of spt(n) are:

1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589 ... (sequence A092269 in the OEIS)

Example

[edit ]

For example, there are five partitions of 4 (with smallest parts underlined):

4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1

These partitions have 1, 1, 2, 2, and 4 smallest parts, respectively. So spt(4) = 1 +たす 1 +たす 2 +たす 2 +たす 4 = 10.

Properties

[edit ]

Like the partition function, spt(n) has a generating function. It is given by

S ( q ) = n = 1 s p t ( n ) q n = 1 ( q ) n = 1 q n m = 1 n 1 ( 1 q m ) 1 q n {\displaystyle S(q)=\sum _{n=1}^{\infty }\mathrm {spt} (n)q^{n}={\frac {1}{(q)_{\infty }}}\sum _{n=1}^{\infty }{\frac {q^{n}\prod _{m=1}^{n-1}(1-q^{m})}{1-q^{n}}}} {\displaystyle S(q)=\sum _{n=1}^{\infty }\mathrm {spt} (n)q^{n}={\frac {1}{(q)_{\infty }}}\sum _{n=1}^{\infty }{\frac {q^{n}\prod _{m=1}^{n-1}(1-q^{m})}{1-q^{n}}}}

where ( q ) = n = 1 ( 1 q n ) {\displaystyle (q)_{\infty }=\prod _{n=1}^{\infty }(1-q^{n})} {\displaystyle (q)_{\infty }=\prod _{n=1}^{\infty }(1-q^{n})}.

The function S ( q ) {\displaystyle S(q)} {\displaystyle S(q)} is related to a mock modular form. Let E 2 ( z ) {\displaystyle E_{2}(z)} {\displaystyle E_{2}(z)} denote the weight 2 quasi-modular Eisenstein series and let η ( z ) {\displaystyle \eta (z)} {\displaystyle \eta (z)} denote the Dedekind eta function. Then for q = e 2 π i z {\displaystyle q=e^{2\pi iz}} {\displaystyle q=e^{2\pi iz}}, the function

S ~ ( z ) := q 1 / 24 S ( q ) 1 12 E 2 ( z ) η ( z ) {\displaystyle {\tilde {S}}(z):=q^{-1/24}S(q)-{\frac {1}{12}}{\frac {E_{2}(z)}{\eta (z)}}} {\displaystyle {\tilde {S}}(z):=q^{-1/24}S(q)-{\frac {1}{12}}{\frac {E_{2}(z)}{\eta (z)}}}

is a mock modular form of weight 3/2 on the full modular group S L 2 ( Z ) {\displaystyle SL_{2}(\mathbb {Z} )} {\displaystyle SL_{2}(\mathbb {Z} )} with multiplier system χ η 1 {\displaystyle \chi _{\eta }^{-1}} {\displaystyle \chi _{\eta }^{-1}}, where χ η {\displaystyle \chi _{\eta }} {\displaystyle \chi _{\eta }} is the multiplier system for η ( z ) {\displaystyle \eta (z)} {\displaystyle \eta (z)}.

While a closed formula is not known for spt(n), there are Ramanujan-like congruences including

s p t ( 5 n + 4 ) 0 mod ( 5 ) {\displaystyle \mathrm {spt} (5n+4)\equiv 0\mod (5)} {\displaystyle \mathrm {spt} (5n+4)\equiv 0\mod (5)}
s p t ( 7 n + 5 ) 0 mod ( 7 ) {\displaystyle \mathrm {spt} (7n+5)\equiv 0\mod (7)} {\displaystyle \mathrm {spt} (7n+5)\equiv 0\mod (7)}
s p t ( 13 n + 6 ) 0 mod ( 13 ) . {\displaystyle \mathrm {spt} (13n+6)\equiv 0\mod (13).} {\displaystyle \mathrm {spt} (13n+6)\equiv 0\mod (13).}

References

[edit ]
  1. ^ Andrews, George E. (2008年11月01日). "The number of smallest parts in the partitions of n" . Journal für die Reine und Angewandte Mathematik. 2008 (624): 133–142. doi:10.1515/CRELLE.2008.083. ISSN 1435-5345. S2CID 123142859.


Stub icon

This number theory-related article is a stub. You can help Wikipedia by expanding it.

Stub icon

This combinatorics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /