Jump to content
Wikipedia The Free Encyclopedia

Snub pentahexagonal tiling

From Wikipedia, the free encyclopedia
Snub pentahexagonal tiling
Snub pentahexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.5.3.6
Schläfli symbol sr{6,5} or s { 6 5 } {\displaystyle s{\begin{Bmatrix}6\5円\end{Bmatrix}}} {\displaystyle s{\begin{Bmatrix}6\5円\end{Bmatrix}}}
Wythoff symbol | 6 5 2
Coxeter diagram
Symmetry group [6,5]+, (652)
Dual Order-6-5 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub pentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,5}.

Images

[edit ]

Drawn in chiral pairs, with edges missing between black triangles:

[edit ]
Uniform hexagonal/pentagonal tilings
Symmetry: [6,5], (*652) [6,5]+, (652) [6,5+], (5*3) [1+,6,5], (*553)
{6,5} t{6,5} r{6,5} 2t{6,5}=t{5,6} 2r{6,5}={5,6} rr{6,5} tr{6,5} sr{6,5} s{5,6} h{6,5}
Uniform duals
V65 V5.12.12 V5.6.5.6 V6.10.10 V56 V4.5.4.6 V4.10.12 V3.3.5.3.6 V3.3.3.5.3.5 V(3.5)5

References

[edit ]

See also

[edit ]
Wikimedia Commons has media related to Uniform tiling 3-3-5-3-6 .
[edit ]


Other
Spherical
Regular
Semi-
regular
Hyper-
bolic


Stub icon

This hyperbolic geometry-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /