Snell envelope
Find sources: "Snell envelope" – news · newspapers · books · scholar · JSTOR (April 2012) (Learn how and when to remove this message)
The Snell envelope, used in stochastics and mathematical finance, is the smallest supermartingale dominating a stochastic process. The Snell envelope is named after James Laurie Snell.
Definition
[edit ]Given a filtered probability space {\displaystyle (\Omega ,{\mathcal {F}},({\mathcal {F}}_{t})_{t\in [0,T]},\mathbb {P} )} and an absolutely continuous probability measure {\displaystyle \mathbb {Q} \ll \mathbb {P} } then an adapted process {\displaystyle U=(U_{t})_{t\in [0,T]}} is the Snell envelope with respect to {\displaystyle \mathbb {Q} } of the process {\displaystyle X=(X_{t})_{t\in [0,T]}} if
- {\displaystyle U} is a {\displaystyle \mathbb {Q} }-supermartingale
- {\displaystyle U} dominates {\displaystyle X}, i.e. {\displaystyle U_{t}\geq X_{t}} {\displaystyle \mathbb {Q} }-almost surely for all times {\displaystyle t\in [0,T]}
- If {\displaystyle V=(V_{t})_{t\in [0,T]}} is a {\displaystyle \mathbb {Q} }-supermartingale which dominates {\displaystyle X}, then {\displaystyle V} dominates {\displaystyle U}.[1]
Construction
[edit ]Given a (discrete) filtered probability space {\displaystyle (\Omega ,{\mathcal {F}},({\mathcal {F}}_{n})_{n=0}^{N},\mathbb {P} )} and an absolutely continuous probability measure {\displaystyle \mathbb {Q} \ll \mathbb {P} } then the Snell envelope {\displaystyle (U_{n})_{n=0}^{N}} with respect to {\displaystyle \mathbb {Q} } of the process {\displaystyle (X_{n})_{n=0}^{N}} is given by the recursive scheme
- {\displaystyle U_{N}:=X_{N},}
- {\displaystyle U_{n}:=X_{n}\lor \mathbb {E} ^{\mathbb {Q} }[U_{n+1}\mid {\mathcal {F}}_{n}]} for {\displaystyle n=N-1,...,0}
where {\displaystyle \lor } is the join (in this case equal to the maximum of the two random variables).[1]
Application
[edit ]- If {\displaystyle X} is a discounted American option payoff with Snell envelope {\displaystyle U} then {\displaystyle U_{t}} is the minimal capital requirement to hedge {\displaystyle X} from time {\displaystyle t} to the expiration date.[1]
References
[edit ]- ^ a b c Föllmer, Hans; Schied, Alexander (2004). Stochastic finance: an introduction in discrete time (2 ed.). Walter de Gruyter. pp. 280–282. ISBN 9783110183467.