Jump to content
Wikipedia The Free Encyclopedia

Self-similarity matrix

From Wikipedia, the free encyclopedia

In data analysis, the self-similarity matrix is a graphical representation of similar sequences in a data series.

Similarity can be explained by different measures, like spatial distance (distance matrix), correlation, or comparison of local histograms or spectral properties (e.g. IXEGRAM[1] ). A similarity plot can be the starting point for dot plots or recurrence plots.

Definition

[edit ]

To construct a self-similarity matrix, one first transforms a data series into an ordered sequence of feature vectors V = ( v 1 , v 2 , , v n ) {\displaystyle V=(v_{1},v_{2},\ldots ,v_{n})} {\displaystyle V=(v_{1},v_{2},\ldots ,v_{n})}, where each vector v i {\displaystyle v_{i}} {\displaystyle v_{i}} describes the relevant features of a data series in a given local interval. Then the self-similarity matrix is formed by computing the similarity of pairs of feature vectors

S ( j , k ) = s ( v j , v k ) j , k ( 1 , , n ) {\displaystyle S(j,k)=s(v_{j},v_{k})\quad j,k\in (1,\ldots ,n)} {\displaystyle S(j,k)=s(v_{j},v_{k})\quad j,k\in (1,\ldots ,n)}

where s ( v j , v k ) {\displaystyle s(v_{j},v_{k})} {\displaystyle s(v_{j},v_{k})} is a function measuring the similarity of the two vectors, for instance, the inner product s ( v j , v k ) = v j v k {\displaystyle s(v_{j},v_{k})=v_{j}\cdot v_{k}} {\displaystyle s(v_{j},v_{k})=v_{j}\cdot v_{k}}. Then similar segments of feature vectors will show up as path of high similarity along diagonals of the matrix.[2] Similarity plots are used for action recognition that is invariant to point of view [3] and for audio segmentation using spectral clustering of the self-similarity matrix.[4]

Example

[edit ]
Similarity plot, a variant of recurrence plot, obtained for different views of human actions are shown to produce similar patterns.[5]

See also

[edit ]

References

[edit ]
  1. ^ M. A. Casey; A. Westner (July 2000). "Separation of mixed audio sources by independent subspace analysis" (PDF). Proc. Int. Comput. Music Conf. Retrieved 2013年11月19日.
  2. ^ Müller, Meinard; Michael Clausen (2007). "Transposition-invariant self-similarity matrices" (PDF). Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007): 47–50. Retrieved 2013年11月19日.
  3. ^ I.N. Junejo; E. Dexter; I. Laptev; Patrick Pérez (2008). "Cross-View Action Recognition from Temporal Self-similarities". Computer Vision – ECCV 2008. Lecture Notes in Computer Science. Vol. 5303. pp. 293–306. CiteSeerX 10.1.1.405.1518 . doi:10.1007/978-3-540-88688-4_22. ISBN 978-3-540-88685-3.
  4. ^ Dubnov, Shlomo; Ted Apel (2004). "Audio segmentation by singular value clustering". Proceedings of Computer Music Conference (ICMC 2004). CiteSeerX 10.1.1.324.4298 .
  5. ^ Cross-View Action Recognition from Temporal Self-Similarities (2008), I. Junejo, E. Dexter, I. Laptev, and Patrick Pérez)

Further reading

[edit ]
[edit ]

AltStyle によって変換されたページ (->オリジナル) /