Jump to content
Wikipedia The Free Encyclopedia

Sea Pole-class bathyscaphe

From Wikipedia, the free encyclopedia
Chinese bathyscaphe class
Not to be confused with 8A4-class ROUV § Sea Pole.
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Sea Pole-class bathyscaphe" – news · newspapers · books · scholar · JSTOR
(December 2011) (Learn how and when to remove this message)
History
 People's Liberation Army Navy
NameSea Pole
Ordered2
Awarded2
Cost180 million \
Sponsored byPeople's Republic of China
Completed2008
Acquired2009
Commissioned2009
Maiden voyage2008
In service2009
StatusProject ends
General characteristics
Typebathyscaphe
Displacement24 t in air
Length8.2 m (27 ft)
Beam3 m (9.8 ft)
Draft3.4 m (11 ft)
Propulsionelectrical
Speed2.5 kt
Range12 hr
Endurance3 x 12 hr
Test depth7,000 m (23,000 ft)
Complement3
Sensors &
processing systems
sonar & search lights

The Sea Pole (Hai Ji, or Chinese: 海极) class bathyscaphe is a class of bathyscaphe of the People's Republic of China (PRC). They are capable of diving up to 7,000 meters, covering 99.8% of the oceanic floor of the world. Two units of this class are planned, with derivatives to follow and are used by both the civilian and military establishments in China.

Design

[edit ]

Sea Pole class bathyscaphe is designed by the 702nd Research Institute of China Shipbuilding Industry Corporation. The general designer is Mr. Xu Huangnan (Chinese: 徐芑南), a professor of School of Naval Architecture, Ocean and Civil Engineering Archived 2009年04月27日 at the Wayback Machine(Chinese: 船舶与海洋工程学院) of Shanghai Jiao Tong University (SHJTU), who also designed many other Chinese submersibles and unmanned underwater vehicles. The first deputy general designer is Mr. Cui Weicheng (Chinese: 崔维成), and the deputy general designer was Mr. Zhu Weiqing (Chinese: 朱维庆), all of the three are academicians of the Chinese Academy of Sciences. There are two mechanical arms with associated tools that enable the bathyscaphe to perform a various tasks at its maximum operational depth, and this pair of mechanical arms with 7 degrees of freedom (7-DOF) are mounted on the right and left sides of the vehicle, which is powered by 110 kWh (110 V, 800 Ah) silver oxide – zinc batteries.

The Sea Pole bathyscaphe is equipped with various communication systems, but the data transfer rate remains a bottleneck, with the transmission rate only being 80 kbit/s, compared to 100 Mbit/s in the usual internet transmissions. As a result, the transmission of an ordinary color image from the bathyscaphe to the mothership takes approximately half a minute.

The pressure hull is built of titanium alloy, and the manufacturing method for the pressure hull involves producing two hemispherical parts by tungsten inert gas (TIG) welding six-side plates to a top plate, followed by heat treatments and polishing by machining; the two halves are then TIG welded together to form a complete sphere. The plate thickness is 76 – 78 mm, with deviations of ±4 mm in the completed radius, and sphericity is 0.4% or less. Pressure testing of the pressure hull was performed in Russia, and included a one-hour test at a water pressure equivalent to 7,700 meters, or a 10% greater depth than the vessel's, 7,000 m maximum operational depth, a continuous hour-long test at water pressure equivalent to 7,000 m, and a test simulating 0 to 7,000 m ascent/descent of the submersible, which was repeated six times. There were no problems reported in any of these tests, and the pressure hull passed with flying colors.

All viewports of Sea Pole class bathyscaphe have a circular truncated cone shape. There is a large viewport with diameter of 20 cm mounted in the bow, and this central view port is the same type of that of Russian Mir class bathyscaphe. The two additional smaller side viewports of 12 cm diameter are mounted on portside and starboard side, closer to the front than other bathyscaphes. The advantage of this arrangement is that it enables navigation while both the pilot and the scientists simultaneously observe an objective in front of the vehicle. However, the side views have limited field of vision. There are two onboard life supporting system based on that of Shenzhou 6 spacecraft, and additionally, there are two onboard oxygen generating systems independent of life supporting system for additional safety. The pressure hull is built of titanium.

Sea Pole class bathyscaphe has a teardrop shape tapering toward the stern and four tail fins which form an X shape. The main thruster system is based on the same design principle as that of the Russian Mir class bathyscaphe. Four main thrusters inclined in a narrowing shape are mounted in the spaces between the four fins. One horizontal thruster is mounted on the top of the bow, and thrusters for vertical / horizontal turning and auxiliary propulsion are provided on the two sides of the hull. Parallel movement in the horizontal direction is achieved by using a combination of the horizontal thruster on the bow and the right and left stern thrusters, while vertical movement uses a combination of the bow side thrusters and the top and bottom stern thrusters.

Sea Pole 1

[edit ]

Sea Pole 1 (Hai Ji Yi Hao, 海极一号) or Sea Pole #1, was the first Sea Pole class bathyscaphe. Due to the high standard of design requirement, the Chinese industrial capability was not adequate enough to meet the requirements, and as a result, the titanium pressure hull was built in Russia, the mechanical arms were built in the US, and the buoyancy system was built in the UK. Sea Pole 1 begun its sea trials in October 2008, and reportedly entered service in 2009. Trials were mostly conducted with a mother ship named (Da Yang Yi Hao, 大洋一号), a modified research ship. Although Sea Pole class bathyscaphe was designed to carry an operator and two scientists, Chinese authorities have announced that in the near future, Sea Pole 1 will carry three operators and no scientists for test and evaluation purposes. The unit price of Sea Pole 1 is around 180 million \, or roughly 25 million US dollars.

Sea Pole 2

[edit ]

Sea Pole 2 (Hai Ji Er Hao, 海极二号) or Sea Pole #2, was the second Sea Pole class bathyscaphe, and possibly the last unit of this class. Unconfirmed Chinese reports (mostly on the internet) have suggested that previous deals China signed with foreign contractors for Sea Pole 1 included technological transfer, and Sea Pole 2 would utilize more domestically produced components once Chinese manufacturers mastered the technologies transferred, but such claims have yet to be confirmed by independent or official sources. One of the most important upgrade of Sea Pole 2 is to increase its communication capability by boosting the data transmission rate via fiber optics. Based on the experience of sea trials of Sea Pole 1, it was recommended that a class of dedicated mother ships be built, with the first one being Great Ocean II (Da Yang Er Hao, or 大洋二号).

Specifications

[edit ]

The specification for Sea Pole 2 bathyscaphe is not yet publicized, but it is reportedly differs from that of Sea Pole 1 slightly. The specification of Sea Pole 1 is listed here.

  • Length: 8.2 meters
  • Width: 3 meters
  • Height: 3.4 meters
  • Inner diameter of the pressure hull: 2.1 meters
  • Mass: 24 tons in air
  • Payload: 220 kg
  • Maximum speed: 2.5 kt
  • Cruise speed: 1 kt
  • Worst weather condition for deployment: Sea state 4
  • Crew: 3
  • Endurance: 12 hr
  • Maximum operating depth: 7,000 meters
  • Never to exceed depth: 7,100 meters
  • Crash depth: 7,700 meter
  • Life support: 3 x 12 hr

Dragon class bathyscaphe

[edit ]

Dragon (Jiao Long, 蛟龙) class bathyscaphe is developed from Sea Pole class bathyscaphe, claimed to be an indigenous design by the Chinese government. Designed by the 702nd Research Institute of the China Shipbuilding Industry Corporation, Dragon class bathyscaphe is slightly smaller than its predecessor, with overall length slightly reduced to 8 meter from the original 8.2 meter of Sea Pole class. Other external difference included the reconfiguration of the support skid: instead of a single large skid on each side totaling a pair in the Sea Pole class, the support skid system of the Dragon class consists of two smaller ones on each side, totaling four. The propulsion system of the Dragon class is also different from that of the Sea Pole class: while the propulsion system at the stern remain unchanged, the smaller thrusters at port side and starboard side on board Sea Pole class is replaced by a pair of much larger thrusters on the Dragon class, with one on each side. Furthermore, these two larger thrusters are protected by frames that are not present on the Sea Pole class. Other dimensional and performance parameters remain the same.

Harmony class bathyscaphe

[edit ]

Harmony (He Xie 和谐) class bathyscaphe is a further planned development of the original Sea Pole class, and looks very similar to the Dragon class bathyscaphe. The main external difference between the Dragon class and the Harmony class is in the number of search lights: instead of three on the port and starboard sides as on the Sea Pole and Dragon classes, there are four on the Harmony class, and instead of four above the main observation window on the Sea Pole and Dragon classes, there are five on the Harmony class.

Deployment

[edit ]

Sea pole class bathyscaphes are deployed on the mothership, Chinese research ship Xiangyanghong (向阳红) No. 9, the only ship right now capable of handling these bathyscaphes. More ships need to be built or converted if every bathyscaphe is to have its own mothership. At least one specially built mothership was requested by scientific research establishments in China, designated as Great Ocean No. 2 (Da Yang Er Hao, 大洋2号). However, in an interview in March 2009, the general engineer of the 702nd Institute, Mr. Yan Kai (颜开) revealed that there was insufficient funding and as a result, the program was significantly slowed down, with the work on the follow-on units postponed. Meanwhile, the first unit completed a 300-meter dive test on Sept 20th 2009. In early Oct 2009, they reached a depth of 1109 meters during a test dive. On May 31, 2010, 3000 meter dive tests began, and concluded on Jul 18, 2010, with a test dive reaching a depth of 3757 meters on Jul 9th 2010. More testing is planning on the availability of additional funding. Should enough funding is provided for all units planned, only one unit would be operating at any given time, while the second unit is in transit, the third is being maintained, and the fourth being used for training.

References

[edit ]
[edit ]
Nuclear
ballistic missile
Nuclear attack
Conventional
ballistic missile
Conventional
attack
Air-independent propulsion
equipped
Hunter-killer
Medium
Unclassified miscellaneous
Aircraft carriers
Destroyers
Frigates
Corvettes
Submarine chasers
Armed merchantmen (Section patrol)
Missile boats
Torpedo boats
Gunboats
Patrol boats
Seagoing
Port security boat
Reconnaissance patrol combatant
Landing helicopter dock or
Landing helicopter assault
Amphibious transport dock
Dock landing ship
Landing ship helicopter
Landing ship tank
Landing ship medium
Landing craft
Landing craft tank
Landing craft utility
Air-cushioned
landing craft
Minelayers
Auxiliary minelayers
Minehunters
Minesweepers
Minesweeping
drone
Auxiliary Minesweepers
Ammunition
ships
Ammunition ship
Ammunition ship, Missile/Rocket
Buoy tenders
Cable layers
Cargo ships
Reefer ships
Cargo ships
Float-on/float-
off ships
General stores
issue ships
Roll-on/roll-
off ships
Container ships
  • Converted/militarized container ships
Self-propelled
lighters/barges
Crane ship
Degaussing /
deperming ships
Dive tenders
Dredgers
Engineering
ships
  • Engineering ships of unknown class/type: Bei-Gong 275 & 276
Environmental
research ships
Fleet Replenishment
ship
Floating pile drivers
General purpose
research ships
Harbor utility
craft
Hospital ships
Hospital ships
Medical evacuation ships
Ambulance transports
Ambulance craftd
Hydrographic
survey ships
Icebreakers
Museum ships
Oceanographic
research ships
Oceanographic
surveillance ships
Personnel
transport
Barracks ships
Dispatch boat
Transport ships
Troopships
Range support &
target ships
Repair ships
Repair dry
docks
Repair ships
Rescue and
salvage ships
Heavy-lift ship
Rescue ships
Salvage ships
Spy ships
Submarine
support ships
Submarine
rescue ships (ASR)
Submarine tenders
Submersibles
Deep-submergence
rescue vehicle
Deep-submergence
vehicle
Other
Submersibles
Diver propulsion
vehicles
Tankers
Replenishment tanker
Transport oiler
Water tanker
Technological
research
ships
Sonar trials ships
Technical research
ships
Unclassified Miscellaneous
Submarine
Torpedo trials craft
Torpedo retrievers
Torpedo trials ships
Tracking ship
Training ships
Training ship
Training ship, sail
Onshore stationary
training facilities
Tugs
Harbor tug
Large harbor tug
Rescue Tug
Sea-going Tug
Tugs of unknown class/type
  • Bei-Tuo 153, 651, 704, 728, Dong-Tuo 845, 861, Nan-Tuo 142, 163, 168, 176, 187, 188
UAV motherships
Unmanned surface
vehicles (USV)
Unmanned underwater
vehicles (UUV)
Autonomous
underwater vehicle (AUV)
Benthic landers
Bottom crawlers
Hybrid UUVs (Autonomous remotely
-operated vehicles, ARVs)
Remotely operated
underwater vehicle (ROUV)
Weapon trials
ships
* = Under construction or procurement or sea trials
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
Scientific projects
Awards and events
Incidents
Dive boat incidents
Diver rescues
Early diving
Freediving fatalities
Offshore
diving
incidents
Professional
diving
fatalities
Scuba diving
fatalities
Publications
Manuals
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
    Training and registration
    Diver
    training
    Skills
    Recreational
    scuba
    certification
    levels
    Core diving skills
    Leadership skills
    Specialist skills
    Diver training
    certification
    and registration
    organisations
    Commercial diver
    certification
    authorities
    Commercial diving
    schools
    Free-diving
    certification
    agencies
    Recreational
    scuba
    certification
    agencies
    Scientific diver
    certification
    authorities
    Technical diver
    certification
    agencies
    Cave
    diving
    Military diver
    training centres
    Military diver
    training courses
    Surface snorkeling
    Snorkeling/breath-hold
    Breath-hold
    Open Circuit Scuba
    Rebreather
    Sports governing
    organisations
    and federations
    Competitions
    Pioneers
    of diving
    Underwater
    scientists
    archaeologists and
    environmentalists
    Scuba record
    holders
    Underwater
    filmmakers
    and presenters
    Underwater
    photographers
    Underwater
    explorers
    Aquanauts
    Writers and journalists
    Rescuers
    Frogmen
    Commercial salvors
    Diving
    physics
    Diving
    physiology
    Decompression
    theory
    Diving
    environments
    Classification
    Impact
    Other
    Deep-submergence
    vehicle
    Submarine rescue
    Deep-submergence
    rescue vehicle
    Submarine escape
    Escape set
    Special
    interest
    groups
    Neutral buoyancy
    facilities for
    Astronaut training
    Other

    AltStyle によって変換されたページ (->オリジナル) /