Restricted sumset
In additive number theory and combinatorics, a restricted sumset has the form
- {\displaystyle S=\{a_{1}+\cdots +a_{n}:\ a_{1}\in A_{1},\ldots ,a_{n}\in A_{n}\ \mathrm {and} \ P(a_{1},\ldots ,a_{n})\not =0\},}
where {\displaystyle A_{1},\ldots ,A_{n}} are finite nonempty subsets of a field F and {\displaystyle P(x_{1},\ldots ,x_{n})} is a polynomial over F.
If {\displaystyle P} is a constant non-zero function, for example {\displaystyle P(x_{1},\ldots ,x_{n})=1} for any {\displaystyle x_{1},\ldots ,x_{n}}, then {\displaystyle S} is the usual sumset {\displaystyle A_{1}+\cdots +A_{n}} which is denoted by {\displaystyle nA} if {\displaystyle A_{1}=\cdots =A_{n}=A.}
When
- {\displaystyle P(x_{1},\ldots ,x_{n})=\prod _{1\leq i<j\leq n}(x_{j}-x_{i}),}
S is written as {\displaystyle A_{1}\dotplus \cdots \dotplus A_{n}} which is denoted by {\displaystyle n^{\wedge }A} if {\displaystyle A_{1}=\cdots =A_{n}=A.}
Note that |S| > 0 if and only if there exist {\displaystyle a_{1}\in A_{1},\ldots ,a_{n}\in A_{n}} with {\displaystyle P(a_{1},\ldots ,a_{n})\not =0.}
Cauchy–Davenport theorem
[edit ]The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime p and nonempty subsets A and B of the prime order cyclic group {\displaystyle \mathbb {Z} /p\mathbb {Z} } we have the inequality [1] [2] [3]
- {\displaystyle |A+B|\geq \min\{p,,円|A|+|B|-1\}}
where {\displaystyle A+B:=\{a+b{\pmod {p}}\mid a\in A,b\in B\}}, i.e. we're using modular arithmetic. It can be generalised to arbitrary (not necessarily abelian) groups using a Dyson transform. If {\displaystyle A,B} are subsets of a group {\displaystyle G}, then[4]
- {\displaystyle |A+B|\geq \min\{p(G),,円|A|+|B|-1\}}
where {\displaystyle p(G)} is the size of the smallest nontrivial subgroup of {\displaystyle G} (we set it to {\displaystyle 1} if there is no such subgroup).
We may use this to deduce the Erdős–Ginzburg–Ziv theorem: given any sequence of 2n−1 elements in the cyclic group {\displaystyle \mathbb {Z} /n\mathbb {Z} }, there are n elements that sum to zero modulo n. (Here n does not need to be prime.)[5] [6]
A direct consequence of the Cauchy-Davenport theorem is: Given any sequence S of p−1 or more nonzero elements, not necessarily distinct, of {\displaystyle \mathbb {Z} /p\mathbb {Z} }, every element of {\displaystyle \mathbb {Z} /p\mathbb {Z} } can be written as the sum of the elements of some subsequence (possibly empty) of S.[7]
Kneser's theorem generalises this to general abelian groups.[8]
Erdős–Heilbronn conjecture
[edit ]The Erdős–Heilbronn conjecture posed by Paul Erdős and Hans Heilbronn in 1964 states that {\displaystyle |2^{\wedge }A|\geq \min\{p,,2円|A|-3\}} if p is a prime and A is a nonempty subset of the field Z/pZ.[9] This was first confirmed by J. A. Dias da Silva and Y. O. Hamidoune in 1994[10] who showed that
- {\displaystyle |n^{\wedge }A|\geq \min\{p(F),\ n|A|-n^{2}+1\},}
where A is a finite nonempty subset of a field F, and p(F) is a prime p if F is of characteristic p, and p(F) = ∞ if F is of characteristic 0. Various extensions of this result were given by Noga Alon, M. B. Nathanson and I. Ruzsa in 1996,[11] Q. H. Hou and Zhi-Wei Sun in 2002,[12] and G. Karolyi in 2004.[13]
Combinatorial Nullstellensatz
[edit ]A powerful tool in the study of lower bounds for cardinalities of various restricted sumsets is the following fundamental principle: the combinatorial Nullstellensatz.[14] Let {\displaystyle f(x_{1},\ldots ,x_{n})} be a polynomial over a field {\displaystyle F}. Suppose that the coefficient of the monomial {\displaystyle x_{1}^{k_{1}}\cdots x_{n}^{k_{n}}} in {\displaystyle f(x_{1},\ldots ,x_{n})} is nonzero and {\displaystyle k_{1}+\cdots +k_{n}} is the total degree of {\displaystyle f(x_{1},\ldots ,x_{n})}. If {\displaystyle A_{1},\ldots ,A_{n}} are finite subsets of {\displaystyle F} with {\displaystyle |A_{i}|>k_{i}} for {\displaystyle i=1,\ldots ,n}, then there are {\displaystyle a_{1}\in A_{1},\ldots ,a_{n}\in A_{n}} such that {\displaystyle f(a_{1},\ldots ,a_{n})\neq 0}.
This tool was rooted in a paper of N. Alon and M. Tarsi in 1989,[15] and developed by Alon, Nathanson and Ruzsa in 1995–1996,[11] and reformulated by Alon in 1999.[14]
See also
[edit ]References
[edit ]- ^ Nathanson (1996) p.44
- ^ Geroldinger & Ruzsa (2009) pp.141–142
- ^ Jeffrey Paul Wheeler (2012). "The Cauchy-Davenport Theorem for Finite Groups". arXiv:1202.1816 [math.CO].
- ^ DeVos, Matt (2016). "On a Generalization of the Cauchy-Davenport Theorem". Integers. 16.
- ^ Nathanson (1996) p.48
- ^ Geroldinger & Ruzsa (2009) p.53
- ^ Wolfram's MathWorld, Cauchy-Davenport Theorem, http://mathworld.wolfram.com/Cauchy-DavenportTheorem.html, accessed 20 June 2012.
- ^ Geroldinger & Ruzsa (2009) p.143
- ^ Nathanson (1996) p.77
- ^ Dias da Silva, J. A.; Hamidoune, Y. O. (1994). "Cyclic spaces for Grassmann derivatives and additive theory". Bulletin of the London Mathematical Society . 26 (2): 140–146. doi:10.1112/blms/26.2.140.
- ^ a b Alon, Noga; Nathanson, Melvyn B.; Ruzsa, Imre (1996). "The polynomial method and restricted sums of congruence classes" (PDF). Journal of Number Theory . 56 (2): 404–417. doi:10.1006/jnth.1996.0029. MR 1373563.
- ^ Hou, Qing-Hu; Sun, Zhi-Wei (2002). "Restricted sums in a field". Acta Arithmetica . 102 (3): 239–249. Bibcode:2002AcAri.102..239H. doi:10.4064/aa102-3-3 . MR 1884717.
- ^ Károlyi, Gyula (2004). "The Erdős–Heilbronn problem in abelian groups". Israel Journal of Mathematics . 139: 349–359. doi:10.1007/BF02787556. MR 2041798. S2CID 33387005.
- ^ a b Alon, Noga (1999). "Combinatorial Nullstellensatz" (PDF). Combinatorics, Probability and Computing . 8 (1–2): 7–29. doi:10.1017/S0963548398003411. MR 1684621. S2CID 209877602.
- ^ Alon, Noga; Tarsi, Michael (1989). "A nowhere-zero point in linear mappings". Combinatorica . 9 (4): 393–395. CiteSeerX 10.1.1.163.2348 . doi:10.1007/BF02125351. MR 1054015. S2CID 8208350.
- Geroldinger, Alfred; Ruzsa, Imre Z., eds. (2009). Combinatorial number theory and additive group theory. Advanced Courses in Mathematics CRM Barcelona. Elsholtz, C.; Freiman, G.; Hamidoune, Y. O.; Hegyvári, N.; Károlyi, G.; Nathanson, M.; Solymosi, J.; Stanchescu, Y. With a foreword by Javier Cilleruelo, Marc Noy and Oriol Serra (Coordinators of the DocCourse). Basel: Birkhäuser. ISBN 978-3-7643-8961-1. Zbl 1177.11005.
- Nathanson, Melvyn B. (1996). Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics. Vol. 165. Springer-Verlag. ISBN 0-387-94655-1. Zbl 0859.11003.