Rank factorization
In mathematics, given a field {\displaystyle \mathbb {F} }, non-negative integers {\displaystyle m,n}, and a matrix {\displaystyle A\in \mathbb {F} ^{m\times n}}, a rank decomposition or rank factorization of A is a factorization of A of the form A = CF, where {\displaystyle C\in \mathbb {F} ^{m\times r}} and {\displaystyle F\in \mathbb {F} ^{r\times n}}, where {\displaystyle r=\operatorname {rank} A} is the rank of {\displaystyle A}.
Existence
[edit ]Every finite-dimensional matrix has a rank decomposition: Let {\textstyle A} be an {\textstyle m\times n} matrix whose column rank is {\textstyle r}. Therefore, there are {\textstyle r} linearly independent columns in {\textstyle A}; equivalently, the dimension of the column space of {\textstyle A} is {\textstyle r}. Let {\textstyle \mathbf {c} _{1},\mathbf {c} _{2},\ldots ,\mathbf {c} _{r}} be any basis for the column space of {\textstyle A} and place them as column vectors to form the {\textstyle m\times r} matrix {\textstyle C={\begin{bmatrix}\mathbf {c} _{1}&\mathbf {c} _{2}&\cdots &\mathbf {c} _{r}\end{bmatrix}}}. Therefore, every column vector of {\textstyle A} is a linear combination of the columns of {\textstyle C}. To be precise, if {\textstyle A={\begin{bmatrix}\mathbf {a} _{1}&\mathbf {a} _{2}&\cdots &\mathbf {a} _{n}\end{bmatrix}}} is an {\textstyle m\times n} matrix with {\textstyle \mathbf {a} _{j}} as the {\textstyle j}-th column, then
- {\displaystyle \mathbf {a} _{j}=f_{1j}\mathbf {c} _{1}+f_{2j}\mathbf {c} _{2}+\cdots +f_{rj}\mathbf {c} _{r},}
where {\textstyle f_{ij}}'s are the scalar coefficients of {\textstyle \mathbf {a} _{j}} in terms of the basis {\textstyle \mathbf {c} _{1},\mathbf {c} _{2},\ldots ,\mathbf {c} _{r}}. This implies that {\textstyle A=CF}, where {\textstyle f_{ij}} is the {\textstyle (i,j)}-th element of {\textstyle F}.
Non-uniqueness
[edit ]If {\textstyle A=C_{1}F_{1}} is a rank factorization, taking {\textstyle C_{2}=C_{1}R} and {\textstyle F_{2}=R^{-1}F_{1}} gives another rank factorization for any invertible matrix {\textstyle R} of compatible dimensions.
Conversely, if {\textstyle A=F_{1}G_{1}=F_{2}G_{2}} are two rank factorizations of {\textstyle A}, then there exists an invertible matrix {\textstyle R} such that {\textstyle F_{1}=F_{2}R} and {\textstyle G_{1}=R^{-1}G_{2}}.[1]
Construction
[edit ]Rank factorization from reduced row echelon forms
[edit ]In practice, we can construct one specific rank factorization as follows: we can compute {\textstyle B}, the reduced row echelon form of {\textstyle A}. Then {\textstyle C} is obtained by removing from {\textstyle A} all non-pivot columns (which can be determined by looking for columns in {\textstyle B} which do not contain a pivot), and {\textstyle F} is obtained by eliminating any all-zero rows of {\textstyle B}.
Note: For a full-rank square matrix (i.e. when {\textstyle n=m=r}), this procedure will yield the trivial result {\textstyle C=A} and {\textstyle F=B=I_{n}} (the {\textstyle n\times n} identity matrix).
Example
[edit ]Consider the matrix
- {\displaystyle A={\begin{bmatrix}1&3&1&4\2円&7&3&9\1円&5&3&1\1円&2&0&8\end{bmatrix}}\sim {\begin{bmatrix}1&0&-2&0\0円&1&1&0\0円&0&0&1\0円&0&0&0\end{bmatrix}}=B{\text{.}}}
{\textstyle B} is in reduced echelon form.
Then {\textstyle C} is obtained by removing the third column of {\textstyle A}, the only one which is not a pivot column, and {\textstyle F} by getting rid of the last row of zeroes from {\textstyle B}, so
- {\displaystyle C={\begin{bmatrix}1&3&4\2円&7&9\1円&5&1\1円&2&8\end{bmatrix}}{\text{,}}\qquad F={\begin{bmatrix}1&0&-2&0\0円&1&1&0\0円&0&0&1\end{bmatrix}}{\text{.}}}
It is straightforward to check that
- {\displaystyle A={\begin{bmatrix}1&3&1&4\2円&7&3&9\1円&5&3&1\1円&2&0&8\end{bmatrix}}={\begin{bmatrix}1&3&4\2円&7&9\1円&5&1\1円&2&8\end{bmatrix}}{\begin{bmatrix}1&0&-2&0\0円&1&1&0\0円&0&0&1\end{bmatrix}}=CF{\text{.}}}
Proof
[edit ]Let {\textstyle P} be an {\textstyle n\times n} permutation matrix such that {\textstyle AP=(C,D)} in block partitioned form, where the columns of {\textstyle C} are the {\textstyle r} pivot columns of {\textstyle A}. Every column of {\textstyle D} is a linear combination of the columns of {\textstyle C}, so there is a matrix {\textstyle G} such that {\textstyle D=CG}, where the columns of {\textstyle G} contain the coefficients of each of those linear combinations. So {\textstyle AP=(C,CG)=C(I_{r},G)}, {\textstyle I_{r}} being the {\textstyle r\times r} identity matrix. We will show now that {\textstyle (I_{r},G)=FP}.
Transforming {\textstyle A} into its reduced row echelon form {\textstyle B} amounts to left-multiplying by a matrix {\textstyle E} which is a product of elementary matrices, so {\textstyle EAP=BP=EC(I_{r},G)}, where {\textstyle EC={\begin{pmatrix}I_{r}\0円\end{pmatrix}}}. We then can write {\textstyle BP={\begin{pmatrix}I_{r}&G\0円&0\end{pmatrix}}}, which allows us to identify {\textstyle (I_{r},G)=FP}, i.e. the nonzero {\textstyle r} rows of the reduced echelon form, with the same permutation on the columns as we did for {\textstyle A}. We thus have {\textstyle AP=CFP}, and since {\textstyle P} is invertible this implies {\textstyle A=CF}, and the proof is complete.
Singular value decomposition
[edit ]If {\displaystyle \mathbb {F} \in \{\mathbb {R} ,\mathbb {C} \},} then one can also construct a full-rank factorization of {\textstyle A} via a singular value decomposition
- {\displaystyle A=U\Sigma V^{*}={\begin{bmatrix}U_{1}&U_{2}\end{bmatrix}}{\begin{bmatrix}\Sigma _{r}&0\0円&0\end{bmatrix}}{\begin{bmatrix}V_{1}^{*}\\V_{2}^{*}\end{bmatrix}}=U_{1}\left(\Sigma _{r}V_{1}^{*}\right).}
Since {\textstyle U_{1}} is a full-column-rank matrix and {\textstyle \Sigma _{r}V_{1}^{*}} is a full-row-rank matrix, we can take {\textstyle C=U_{1}} and {\textstyle F=\Sigma _{r}V_{1}^{*}}.
Consequences
[edit ]rank(A) = rank(AT)
[edit ]An immediate consequence of rank factorization is that the rank of {\textstyle A} is equal to the rank of its transpose {\textstyle A^{\textsf {T}}}. Since the columns of {\textstyle A} are the rows of {\textstyle A^{\textsf {T}}}, the column rank of {\textstyle A} equals its row rank.[2]
Proof: To see why this is true, let us first define rank to mean column rank. Since {\textstyle A=CF}, it follows that {\textstyle A^{\textsf {T}}=F^{\textsf {T}}C^{\textsf {T}}}. From the definition of matrix multiplication, this means that each column of {\textstyle A^{\textsf {T}}} is a linear combination of the columns of {\textstyle F^{\textsf {T}}}. Therefore, the column space of {\textstyle A^{\textsf {T}}} is contained within the column space of {\textstyle F^{\textsf {T}}} and, hence, {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(F^{\textsf {T}}\right)}.
Now, {\textstyle F^{\textsf {T}}} is {\textstyle n\times r}, so there are {\textstyle r} columns in {\textstyle F^{\textsf {T}}} and, hence, {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq r=\operatorname {rank} \left(A\right)}. This proves that {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(A\right)}.
Now apply the result to {\textstyle A^{\textsf {T}}} to obtain the reverse inequality: since {\textstyle \left(A^{\textsf {T}}\right)^{\textsf {T}}=A}, we can write {\textstyle \operatorname {rank} \left(A\right)=\operatorname {rank} \left(\left(A^{\textsf {T}}\right)^{\textsf {T}}\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)}. This proves {\textstyle \operatorname {rank} \left(A\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)}.
We have, therefore, proved {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(A\right)} and {\textstyle \operatorname {rank} \left(A\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)}, so {\textstyle \operatorname {rank} \left(A\right)=\operatorname {rank} \left(A^{\textsf {T}}\right)}.
Notes
[edit ]- ^ Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882. JSTOR 2690882.
- ^ Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN 978-1420095388
References
[edit ]- Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN 978-1420095388
- Lay, David C. (2005), Linear Algebra and its Applications (3rd ed.), Addison Wesley, ISBN 978-0-201-70970-4
- Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations, Johns Hopkins Studies in Mathematical Sciences (3rd ed.), The Johns Hopkins University Press, ISBN 978-0-8018-5414-9
- Stewart, Gilbert W. (1998), Matrix Algorithms. I. Basic Decompositions, SIAM, ISBN 978-0-89871-414-2
- Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882. JSTOR 2690882.