Prais–Winsten estimation
In econometrics, Prais–Winsten estimation is a procedure meant to take care of the serial correlation of type AR(1) in a linear model. Conceived by Sigbert Prais and Christopher Winsten in 1954,[1] it is a modification of Cochrane–Orcutt estimation in the sense that it does not lose the first observation, which leads to more efficiency as a result and makes it a special case of feasible generalized least squares.[2]
Theory
[edit ]Consider the model
- {\displaystyle y_{t}=\alpha +X_{t}\beta +\varepsilon _{t},,円}
where {\displaystyle y_{t}} is the time series of interest at time t, {\displaystyle \beta } is a vector of coefficients, {\displaystyle X_{t}} is a matrix of explanatory variables, and {\displaystyle \varepsilon _{t}} is the error term. The error term can be serially correlated over time: {\displaystyle \varepsilon _{t}=\rho \varepsilon _{t-1}+e_{t},\ |\rho |<1} and {\displaystyle e_{t}} is white noise. In addition to the Cochrane–Orcutt transformation, which is
- {\displaystyle y_{t}-\rho y_{t-1}=\alpha (1-\rho )+(X_{t}-\rho X_{t-1})\beta +e_{t},,円}
for t = 2,3,...,T, the Prais-Winsten procedure makes a reasonable transformation for t = 1 in the following form:
- {\displaystyle {\sqrt {1-\rho ^{2}}}y_{1}=\alpha {\sqrt {1-\rho ^{2}}}+\left({\sqrt {1-\rho ^{2}}}X_{1}\right)\beta +{\sqrt {1-\rho ^{2}}}\varepsilon _{1}.,円}
Then the usual least squares estimation is done.
Estimation procedure
[edit ]First notice that
{\displaystyle \mathrm {var} (\varepsilon _{t})=\mathrm {var} (\rho \varepsilon _{t-1}+e_{t})=\rho ^{2}\mathrm {var} (\varepsilon _{t-1})+\mathrm {var} (e_{t})}
Noting that for a stationary process, variance is constant over time,
{\displaystyle (1-\rho ^{2})\mathrm {var} (\varepsilon _{t})=\mathrm {var} (e_{t})}
and thus,
{\displaystyle \mathrm {var} (\varepsilon _{t})={\frac {\mathrm {var} (e_{t})}{(1-\rho ^{2})}}}
Without loss of generality suppose the variance of the white noise is 1. To do the estimation in a compact way one must look at the autocovariance function of the error term considered in the model below:
- {\displaystyle \mathrm {cov} (\varepsilon _{t},\varepsilon _{t+h})=\rho ^{h}\mathrm {var} (\varepsilon _{t})={\frac {\rho ^{h}}{1-\rho ^{2}}},{\text{ for }}h=0,\pm 1,\pm 2,\dots ,円.}
It is easy to see that the variance–covariance matrix, {\displaystyle \mathbf {\Omega } }, of the model is
- {\displaystyle \mathbf {\Omega } ={\begin{bmatrix}{\frac {1}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&{\frac {\rho ^{2}}{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-1}}{1-\rho ^{2}}}\\[8pt]{\frac {\rho }{1-\rho ^{2}}}&{\frac {1}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-2}}{1-\rho ^{2}}}\\[8pt]{\frac {\rho ^{2}}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&{\frac {1}{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-3}}{1-\rho ^{2}}}\\[8pt]\vdots &\vdots &\vdots &\ddots &\vdots \\[8pt]{\frac {\rho ^{T-1}}{1-\rho ^{2}}}&{\frac {\rho ^{T-2}}{1-\rho ^{2}}}&{\frac {\rho ^{T-3}}{1-\rho ^{2}}}&\cdots &{\frac {1}{1-\rho ^{2}}}\end{bmatrix}}.}
Having {\displaystyle \rho } (or an estimate of it), we see that,
- {\displaystyle {\hat {\Theta }}=(\mathbf {Z} ^{\mathsf {T}}\mathbf {\Omega } ^{-1}\mathbf {Z} )^{-1}(\mathbf {Z} ^{\mathsf {T}}\mathbf {\Omega } ^{-1}\mathbf {Y} ),,円}
where {\displaystyle \mathbf {Z} } is a matrix of observations on the independent variable (Xt, t = 1, 2, ..., T) including a vector of ones, {\displaystyle \mathbf {Y} } is a vector stacking the observations on the dependent variable (yt, t = 1, 2, ..., T) and {\displaystyle {\hat {\Theta }}} includes the model parameters.
Note
[edit ]To see why the initial observation assumption stated by Prais–Winsten (1954) is reasonable, considering the mechanics of generalized least square estimation procedure sketched above is helpful. The inverse of {\displaystyle \mathbf {\Omega } } can be decomposed as {\displaystyle \mathbf {\Omega } ^{-1}=\mathbf {G} ^{\mathsf {T}}\mathbf {G} } with[3]
- {\displaystyle \mathbf {G} ={\begin{bmatrix}{\sqrt {1-\rho ^{2}}}&0&0&\cdots &0\\-\rho &1&0&\cdots &0\0円&-\rho &1&\cdots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \0円&0&0&\cdots &1\end{bmatrix}}.}
A pre-multiplication of model in a matrix notation with this matrix gives the transformed model of Prais–Winsten.
Restrictions
[edit ]The error term is still restricted to be of an AR(1) type. If {\displaystyle \rho } is not known, a recursive procedure (Cochrane–Orcutt estimation) or grid-search (Hildreth–Lu estimation) may be used to make the estimation feasible. Alternatively, a full information maximum likelihood procedure that estimates all parameters simultaneously has been suggested by Beach and MacKinnon.[4] [5]
References
[edit ]- ^ Prais, S. J.; Winsten, C. B. (1954). "Trend Estimators and Serial Correlation" (PDF). Cowles Commission Discussion Paper No. 383. Chicago.
- ^ Johnston, John (1972). Econometric Methods (2nd ed.). New York: McGraw-Hill. pp. 259–265. ISBN 9780070326798.
- ^ Kadiyala, Koteswara Rao (1968). "A Transformation Used to Circumvent the Problem of Autocorrelation". Econometrica . 36 (1): 93–96. doi:10.2307/1909605. JSTOR 1909605.
- ^ Beach, Charles M.; MacKinnon, James G. (1978). "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors". Econometrica . 46 (1): 51–58. doi:10.2307/1913644. JSTOR 1913644.
- ^ Amemiya, Takeshi (1985). Advanced Econometrics. Cambridge: Harvard University Press. pp. 190–191. ISBN 0-674-00560-0.
Further reading
[edit ]- Judge, George G.; Griffiths, William E.; Hill, R. Carter; Lee, Tsoung-Chao (1980). The Theory and Practice of Econometrics. New York: Wiley. pp. 180–183. ISBN 0-471-05938-2.
- Kmenta, Jan (1986). Elements of Econometrics (Second ed.). New York: Macmillan. pp. 302–320. ISBN 0-02-365070-2.