Jump to content
Wikipedia The Free Encyclopedia

Prais–Winsten estimation

From Wikipedia, the free encyclopedia
Estimation technique for serially correlated observations
This article includes a list of general references, but it lacks sufficient corresponding inline citations . Please help to improve this article by introducing more precise citations. (November 2010) (Learn how and when to remove this message)

In econometrics, Prais–Winsten estimation is a procedure meant to take care of the serial correlation of type AR(1) in a linear model. Conceived by Sigbert Prais and Christopher Winsten in 1954,[1] it is a modification of Cochrane–Orcutt estimation in the sense that it does not lose the first observation, which leads to more efficiency as a result and makes it a special case of feasible generalized least squares.[2]

Theory

[edit ]

Consider the model

y t = α + X t β + ε t , {\displaystyle y_{t}=\alpha +X_{t}\beta +\varepsilon _{t},,円} {\displaystyle y_{t}=\alpha +X_{t}\beta +\varepsilon _{t},,円}

where y t {\displaystyle y_{t}} {\displaystyle y_{t}} is the time series of interest at time t, β {\displaystyle \beta } {\displaystyle \beta } is a vector of coefficients, X t {\displaystyle X_{t}} {\displaystyle X_{t}} is a matrix of explanatory variables, and ε t {\displaystyle \varepsilon _{t}} {\displaystyle \varepsilon _{t}} is the error term. The error term can be serially correlated over time: ε t = ρ ε t 1 + e t ,   | ρ | < 1 {\displaystyle \varepsilon _{t}=\rho \varepsilon _{t-1}+e_{t},\ |\rho |<1} {\displaystyle \varepsilon _{t}=\rho \varepsilon _{t-1}+e_{t},\ |\rho |<1} and e t {\displaystyle e_{t}} {\displaystyle e_{t}} is white noise. In addition to the Cochrane–Orcutt transformation, which is

y t ρ y t 1 = α ( 1 ρ ) + ( X t ρ X t 1 ) β + e t , {\displaystyle y_{t}-\rho y_{t-1}=\alpha (1-\rho )+(X_{t}-\rho X_{t-1})\beta +e_{t},,円} {\displaystyle y_{t}-\rho y_{t-1}=\alpha (1-\rho )+(X_{t}-\rho X_{t-1})\beta +e_{t},,円}

for t = 2,3,...,T, the Prais-Winsten procedure makes a reasonable transformation for t = 1 in the following form:

1 ρ 2 y 1 = α 1 ρ 2 + ( 1 ρ 2 X 1 ) β + 1 ρ 2 ε 1 . {\displaystyle {\sqrt {1-\rho ^{2}}}y_{1}=\alpha {\sqrt {1-\rho ^{2}}}+\left({\sqrt {1-\rho ^{2}}}X_{1}\right)\beta +{\sqrt {1-\rho ^{2}}}\varepsilon _{1}.,円} {\displaystyle {\sqrt {1-\rho ^{2}}}y_{1}=\alpha {\sqrt {1-\rho ^{2}}}+\left({\sqrt {1-\rho ^{2}}}X_{1}\right)\beta +{\sqrt {1-\rho ^{2}}}\varepsilon _{1}.,円}

Then the usual least squares estimation is done.

Estimation procedure

[edit ]

First notice that

v a r ( ε t ) = v a r ( ρ ε t 1 + e t ) = ρ 2 v a r ( ε t 1 ) + v a r ( e t ) {\displaystyle \mathrm {var} (\varepsilon _{t})=\mathrm {var} (\rho \varepsilon _{t-1}+e_{t})=\rho ^{2}\mathrm {var} (\varepsilon _{t-1})+\mathrm {var} (e_{t})} {\displaystyle \mathrm {var} (\varepsilon _{t})=\mathrm {var} (\rho \varepsilon _{t-1}+e_{t})=\rho ^{2}\mathrm {var} (\varepsilon _{t-1})+\mathrm {var} (e_{t})}

Noting that for a stationary process, variance is constant over time,

( 1 ρ 2 ) v a r ( ε t ) = v a r ( e t ) {\displaystyle (1-\rho ^{2})\mathrm {var} (\varepsilon _{t})=\mathrm {var} (e_{t})} {\displaystyle (1-\rho ^{2})\mathrm {var} (\varepsilon _{t})=\mathrm {var} (e_{t})}

and thus,

v a r ( ε t ) = v a r ( e t ) ( 1 ρ 2 ) {\displaystyle \mathrm {var} (\varepsilon _{t})={\frac {\mathrm {var} (e_{t})}{(1-\rho ^{2})}}} {\displaystyle \mathrm {var} (\varepsilon _{t})={\frac {\mathrm {var} (e_{t})}{(1-\rho ^{2})}}}

Without loss of generality suppose the variance of the white noise is 1. To do the estimation in a compact way one must look at the autocovariance function of the error term considered in the model below:

c o v ( ε t , ε t + h ) = ρ h v a r ( ε t ) = ρ h 1 ρ 2 ,  for  h = 0 , ± 1 , ± 2 , . {\displaystyle \mathrm {cov} (\varepsilon _{t},\varepsilon _{t+h})=\rho ^{h}\mathrm {var} (\varepsilon _{t})={\frac {\rho ^{h}}{1-\rho ^{2}}},{\text{ for }}h=0,\pm 1,\pm 2,\dots ,円.} {\displaystyle \mathrm {cov} (\varepsilon _{t},\varepsilon _{t+h})=\rho ^{h}\mathrm {var} (\varepsilon _{t})={\frac {\rho ^{h}}{1-\rho ^{2}}},{\text{ for }}h=0,\pm 1,\pm 2,\dots ,円.}

It is easy to see that the variance–covariance matrix, Ω {\displaystyle \mathbf {\Omega } } {\displaystyle \mathbf {\Omega } }, of the model is

Ω = [ 1 1 ρ 2 ρ 1 ρ 2 ρ 2 1 ρ 2 ρ T 1 1 ρ 2 ρ 1 ρ 2 1 1 ρ 2 ρ 1 ρ 2 ρ T 2 1 ρ 2 ρ 2 1 ρ 2 ρ 1 ρ 2 1 1 ρ 2 ρ T 3 1 ρ 2 ρ T 1 1 ρ 2 ρ T 2 1 ρ 2 ρ T 3 1 ρ 2 1 1 ρ 2 ] . {\displaystyle \mathbf {\Omega } ={\begin{bmatrix}{\frac {1}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&{\frac {\rho ^{2}}{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-1}}{1-\rho ^{2}}}\\[8pt]{\frac {\rho }{1-\rho ^{2}}}&{\frac {1}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-2}}{1-\rho ^{2}}}\\[8pt]{\frac {\rho ^{2}}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&{\frac {1}{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-3}}{1-\rho ^{2}}}\\[8pt]\vdots &\vdots &\vdots &\ddots &\vdots \\[8pt]{\frac {\rho ^{T-1}}{1-\rho ^{2}}}&{\frac {\rho ^{T-2}}{1-\rho ^{2}}}&{\frac {\rho ^{T-3}}{1-\rho ^{2}}}&\cdots &{\frac {1}{1-\rho ^{2}}}\end{bmatrix}}.} {\displaystyle \mathbf {\Omega } ={\begin{bmatrix}{\frac {1}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&{\frac {\rho ^{2}}{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-1}}{1-\rho ^{2}}}\\[8pt]{\frac {\rho }{1-\rho ^{2}}}&{\frac {1}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-2}}{1-\rho ^{2}}}\\[8pt]{\frac {\rho ^{2}}{1-\rho ^{2}}}&{\frac {\rho }{1-\rho ^{2}}}&{\frac {1}{1-\rho ^{2}}}&\cdots &{\frac {\rho ^{T-3}}{1-\rho ^{2}}}\\[8pt]\vdots &\vdots &\vdots &\ddots &\vdots \\[8pt]{\frac {\rho ^{T-1}}{1-\rho ^{2}}}&{\frac {\rho ^{T-2}}{1-\rho ^{2}}}&{\frac {\rho ^{T-3}}{1-\rho ^{2}}}&\cdots &{\frac {1}{1-\rho ^{2}}}\end{bmatrix}}.}

Having ρ {\displaystyle \rho } {\displaystyle \rho } (or an estimate of it), we see that,

Θ ^ = ( Z T Ω 1 Z ) 1 ( Z T Ω 1 Y ) , {\displaystyle {\hat {\Theta }}=(\mathbf {Z} ^{\mathsf {T}}\mathbf {\Omega } ^{-1}\mathbf {Z} )^{-1}(\mathbf {Z} ^{\mathsf {T}}\mathbf {\Omega } ^{-1}\mathbf {Y} ),,円} {\displaystyle {\hat {\Theta }}=(\mathbf {Z} ^{\mathsf {T}}\mathbf {\Omega } ^{-1}\mathbf {Z} )^{-1}(\mathbf {Z} ^{\mathsf {T}}\mathbf {\Omega } ^{-1}\mathbf {Y} ),,円}

where Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } is a matrix of observations on the independent variable (Xt, t = 1, 2, ..., T) including a vector of ones, Y {\displaystyle \mathbf {Y} } {\displaystyle \mathbf {Y} } is a vector stacking the observations on the dependent variable (yt, t = 1, 2, ..., T) and Θ ^ {\displaystyle {\hat {\Theta }}} {\displaystyle {\hat {\Theta }}} includes the model parameters.

Note

[edit ]

To see why the initial observation assumption stated by Prais–Winsten (1954) is reasonable, considering the mechanics of generalized least square estimation procedure sketched above is helpful. The inverse of Ω {\displaystyle \mathbf {\Omega } } {\displaystyle \mathbf {\Omega } } can be decomposed as Ω 1 = G T G {\displaystyle \mathbf {\Omega } ^{-1}=\mathbf {G} ^{\mathsf {T}}\mathbf {G} } {\displaystyle \mathbf {\Omega } ^{-1}=\mathbf {G} ^{\mathsf {T}}\mathbf {G} } with[3]

G = [ 1 ρ 2 0 0 0 ρ 1 0 0 0 ρ 1 0 0 0 0 1 ] . {\displaystyle \mathbf {G} ={\begin{bmatrix}{\sqrt {1-\rho ^{2}}}&0&0&\cdots &0\\-\rho &1&0&\cdots &0\0円&-\rho &1&\cdots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \0円&0&0&\cdots &1\end{bmatrix}}.} {\displaystyle \mathbf {G} ={\begin{bmatrix}{\sqrt {1-\rho ^{2}}}&0&0&\cdots &0\\-\rho &1&0&\cdots &0\0円&-\rho &1&\cdots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \0円&0&0&\cdots &1\end{bmatrix}}.}

A pre-multiplication of model in a matrix notation with this matrix gives the transformed model of Prais–Winsten.

Restrictions

[edit ]

The error term is still restricted to be of an AR(1) type. If ρ {\displaystyle \rho } {\displaystyle \rho } is not known, a recursive procedure (Cochrane–Orcutt estimation) or grid-search (Hildreth–Lu estimation) may be used to make the estimation feasible. Alternatively, a full information maximum likelihood procedure that estimates all parameters simultaneously has been suggested by Beach and MacKinnon.[4] [5]

References

[edit ]
  1. ^ Prais, S. J.; Winsten, C. B. (1954). "Trend Estimators and Serial Correlation" (PDF). Cowles Commission Discussion Paper No. 383. Chicago.
  2. ^ Johnston, John (1972). Econometric Methods (2nd ed.). New York: McGraw-Hill. pp. 259–265. ISBN 9780070326798.
  3. ^ Kadiyala, Koteswara Rao (1968). "A Transformation Used to Circumvent the Problem of Autocorrelation". Econometrica . 36 (1): 93–96. doi:10.2307/1909605. JSTOR 1909605.
  4. ^ Beach, Charles M.; MacKinnon, James G. (1978). "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors". Econometrica . 46 (1): 51–58. doi:10.2307/1913644. JSTOR 1913644.
  5. ^ Amemiya, Takeshi (1985). Advanced Econometrics. Cambridge: Harvard University Press. pp. 190–191. ISBN 0-674-00560-0.

Further reading

[edit ]

AltStyle によって変換されたページ (->オリジナル) /