Jump to content
Wikipedia The Free Encyclopedia

Pillai's arithmetical function

From Wikipedia, the free encyclopedia

In number theory, the gcd-sum function,[1] also called Pillai's arithmetical function,[1] is defined for every n {\displaystyle n} {\displaystyle n} by

P ( n ) = k = 1 n gcd ( k , n ) {\displaystyle P(n)=\sum _{k=1}^{n}\gcd(k,n)} {\displaystyle P(n)=\sum _{k=1}^{n}\gcd(k,n)}

or equivalently[1]

P ( n ) = d n d φ ( n / d ) {\displaystyle P(n)=\sum _{d\mid n}d\varphi (n/d)} {\displaystyle P(n)=\sum _{d\mid n}d\varphi (n/d)}

where d {\displaystyle d} {\displaystyle d} is a divisor of n {\displaystyle n} {\displaystyle n} and φ {\displaystyle \varphi } {\displaystyle \varphi } is Euler's totient function.

it also can be written as[2]

P ( n ) = d n d τ ( d ) μ ( n / d ) {\displaystyle P(n)=\sum _{d\mid n}d\tau (d)\mu (n/d)} {\displaystyle P(n)=\sum _{d\mid n}d\tau (d)\mu (n/d)}

where, τ {\displaystyle \tau } {\displaystyle \tau } is the divisor function, and μ {\displaystyle \mu } {\displaystyle \mu } is the Möbius function.

This multiplicative arithmetical function was introduced by the Indian mathematician Subbayya Sivasankaranarayana Pillai in 1933.[3]

[4]

References

[edit ]
  1. ^ a b c Lászlo Tóth (2010). "A survey of gcd-sum functions". J. Integer Sequences. 13.
  2. ^ Sum of GCD(k,n)
  3. ^ S. S. Pillai (1933). "On an arithmetic function". Annamalai University Journal. II: 242–248.
  4. ^ Broughan, Kevin (2002). "The gcd-sum function". Journal of Integer Sequences. 4 (Article 01.2.2): 1–19.

(sequence A018804 in the OEIS)

AltStyle によって変換されたページ (->オリジナル) /