Jump to content
Wikipedia The Free Encyclopedia

Phase-field models on graphs

From Wikipedia, the free encyclopedia
Graph-based mathematical model

Phase-field models on graphs are a discrete analogue to phase-field models, defined on a graph. They are used in image analysis (for feature identification) and for the segmentation of social networks.

Graph Ginzburg–Landau functional

[edit ]

For a graph with vertices V and edge weights ω i , j {\displaystyle \omega _{i,j}} {\displaystyle \omega _{i,j}}, the graph Ginzburg–Landau functional of a map u : V R {\displaystyle u:V\to \mathbb {R} } {\displaystyle u:V\to \mathbb {R} } is given by

F ε ( u ) = ε 2 i , j V ω i j ( u i u j ) 2 + 1 ε i V W ( u i ) , {\displaystyle F_{\varepsilon }(u)={\frac {\varepsilon }{2}}\sum _{i,j\in V}\omega _{ij}(u_{i}-u_{j})^{2}+{\frac {1}{\varepsilon }}\sum _{i\in V}W(u_{i}),} {\displaystyle F_{\varepsilon }(u)={\frac {\varepsilon }{2}}\sum _{i,j\in V}\omega _{ij}(u_{i}-u_{j})^{2}+{\frac {1}{\varepsilon }}\sum _{i\in V}W(u_{i}),}

where W is a double well potential, for example the quartic potential W(x) = x2(1 − x2). The graph Ginzburg–Landau functional was introduced by Bertozzi and Flenner.[1] In analogy to continuum phase-field models, where regions with u close to 0 or 1 are models for two phases of the material, vertices can be classified into those with uj close to 0 or close to 1, and for small ε {\displaystyle \varepsilon } {\displaystyle \varepsilon }, minimisers of F ε {\displaystyle F_{\varepsilon }} {\displaystyle F_{\varepsilon }} will satisfy that uj is close to 0 or 1 for most nodes, splitting the nodes into two classes.

Graph Allen–Cahn equation

[edit ]

To effectively minimise F ε {\displaystyle F_{\varepsilon }} {\displaystyle F_{\varepsilon }}, a natural approach is by gradient flow (steepest descent). This means to introduce an artificial time parameter and to solve the graph version of the Allen–Cahn equation,

d d t u j = ε ( Δ u ) j 1 ε W ( u j ) , {\displaystyle {\frac {d}{dt}}u_{j}=-\varepsilon (\Delta u)_{j}-{\frac {1}{\varepsilon }}W'(u_{j}),} {\displaystyle {\frac {d}{dt}}u_{j}=-\varepsilon (\Delta u)_{j}-{\frac {1}{\varepsilon }}W'(u_{j}),}

where Δ {\displaystyle \Delta } {\displaystyle \Delta } is the graph Laplacian. The ordinary continuum Allen–Cahn equation and the graph Allen–Cahn equation are natural counterparts, just replacing ordinary calculus by calculus on graphs. A convergence result for a numerical graph Allen–Cahn scheme has been established by Luo and Bertozzi.[2]

It is also possible to adapt other computational schemes for mean curvature flow, for example schemes involving thresholding like the Merriman–Bence–Osher scheme, to a graph setting, with analogous results.[3]

See also

[edit ]

References

[edit ]
  1. ^ Bertozzi, A.; Flenner, A. (2012年01月01日). "Diffuse Interface Models on Graphs for Classification of High Dimensional Data". Multiscale Modeling & Simulation. 10 (3): 1090–1118. CiteSeerX 10.1.1.299.4261 . doi:10.1137/11083109X. ISSN 1540-3459.
  2. ^ Luo, Xiyang; Bertozzi, Andrea L. (2017年05月01日). "Convergence of the Graph Allen–Cahn Scheme". Journal of Statistical Physics. 167 (3): 934–958. Bibcode:2017JSP...167..934L. doi:10.1007/s10955-017-1772-4 . ISSN 1572-9613.
  3. ^ van Gennip, Yves. Graph Ginzburg–Landau: discrete dynamics, continuum limits, and applications. An overview. In Ei, S.-I.; Giga, Y.; Hamamuki, N.; Jimbo, S.; Kubo, H.; Kuroda, H.; Ozawa, T.; Sakajo, T.; Tsutaya, K. (2019年07月30日). "Proceedings of 44th Sapporo Symposium on Partial Differential Equations". Hokkaido University Technical Report Series in Mathematics. 177: 89–102. doi:10.14943/89899.

AltStyle によって変換されたページ (->オリジナル) /