Jump to content
Wikipedia The Free Encyclopedia

Operator monotone function

From Wikipedia, the free encyclopedia

In linear algebra, the operator monotone function is an important type of real-valued function, fully classified by Charles Löwner in 1934.[1] It is closely allied to the operator concave and operator convex functions, and is encountered in operator theory and in matrix theory, and led to the Löwner–Heinz inequality.[2] [3]

Definition

[edit ]

A function f : I R {\displaystyle f:I\to \mathbb {R} } {\displaystyle f:I\to \mathbb {R} } defined on an interval I R {\displaystyle I\subseteq \mathbb {R} } {\displaystyle I\subseteq \mathbb {R} } is said to be operator monotone if whenever A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B} are Hermitian matrices (of any size/dimensions) whose eigenvalues all belong to the domain of f {\displaystyle f} {\displaystyle f} and whose difference A B {\displaystyle A-B} {\displaystyle A-B} is a positive semi-definite matrix, then necessarily f ( A ) f ( B ) 0 {\displaystyle f(A)-f(B)\geq 0} {\displaystyle f(A)-f(B)\geq 0} where f ( A ) {\displaystyle f(A)} {\displaystyle f(A)} and f ( B ) {\displaystyle f(B)} {\displaystyle f(B)} are the values of the matrix function induced by f {\displaystyle f} {\displaystyle f} (which are matrices of the same size as A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B}).

Notation

This definition is frequently expressed with the notation that is now defined. Write A 0 {\displaystyle A\geq 0} {\displaystyle A\geq 0} to indicate that a matrix A {\displaystyle A} {\displaystyle A} is positive semi-definite and write A B {\displaystyle A\geq B} {\displaystyle A\geq B} to indicate that the difference A B {\displaystyle A-B} {\displaystyle A-B} of two matrices A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B} satisfies A B 0 {\displaystyle A-B\geq 0} {\displaystyle A-B\geq 0} (that is, A B {\displaystyle A-B} {\displaystyle A-B} is positive semi-definite).

With f : I R {\displaystyle f:I\to \mathbb {R} } {\displaystyle f:I\to \mathbb {R} } and A {\displaystyle A} {\displaystyle A} as in the theorem's statement, the value of the matrix function f ( A ) {\displaystyle f(A)} {\displaystyle f(A)} is the matrix (of the same size as A {\displaystyle A} {\displaystyle A}) defined in terms of its A {\displaystyle A} {\displaystyle A}'s spectral decomposition A = j λ j P j {\displaystyle A=\sum _{j}\lambda _{j}P_{j}} {\displaystyle A=\sum _{j}\lambda _{j}P_{j}} by f ( A ) = j f ( λ j ) P j   , {\displaystyle f(A)=\sum _{j}f(\lambda _{j})P_{j}~,} {\displaystyle f(A)=\sum _{j}f(\lambda _{j})P_{j}~,} where the λ j {\displaystyle \lambda _{j}} {\displaystyle \lambda _{j}} are the eigenvalues of A {\displaystyle A} {\displaystyle A} with corresponding projectors P j . {\displaystyle P_{j}.} {\displaystyle P_{j}.}

The definition of an operator monotone function may now be restated as:

A function f : I R {\displaystyle f:I\to \mathbb {R} } {\displaystyle f:I\to \mathbb {R} } defined on an interval I R {\displaystyle I\subseteq \mathbb {R} } {\displaystyle I\subseteq \mathbb {R} } said to be operator monotone if (and only if) for all positive integers n , {\displaystyle n,} {\displaystyle n,} and all n × n {\displaystyle n\times n} {\displaystyle n\times n} Hermitian matrices A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B} with eigenvalues in I , {\displaystyle I,} {\displaystyle I,} if A B {\displaystyle A\geq B} {\displaystyle A\geq B} then f ( A ) f ( B ) . {\displaystyle f(A)\geq f(B).} {\displaystyle f(A)\geq f(B).}

See also

[edit ]
  • Matrix function – Function that maps matrices to matricesPages displaying short descriptions of redirect targets
  • Trace inequality – Concept in Hlibert spaces mathematics

References

[edit ]
  1. ^ Löwner, K.T. (1934). "Über monotone Matrixfunktionen" . Mathematische Zeitschrift. 38: 177–216. doi:10.1007/BF01170633. S2CID 121439134.
  2. ^ "Löwner–Heinz inequality". Encyclopedia of Mathematics.
  3. ^ Chansangiam, Pattrawut (2013). "Operator Monotone Functions: Characterizations and Integral Representations". arXiv:1305.2471 [math.FA].

Further reading

[edit ]


Stub icon

This linear algebra-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /