Jump to content
Wikipedia The Free Encyclopedia

Normal bundle

From Wikipedia, the free encyclopedia
Concept in mathematics
For normal bundles in algebraic geometry, see normal cone.

In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion).

Definition

[edit ]

Riemannian manifold

[edit ]

Let ( M , g ) {\displaystyle (M,g)} {\displaystyle (M,g)} be a Riemannian manifold, and S M {\displaystyle S\subset M} {\displaystyle S\subset M} a Riemannian submanifold. Define, for a given p S {\displaystyle p\in S} {\displaystyle p\in S}, a vector n T p M {\displaystyle n\in \mathrm {T} _{p}M} {\displaystyle n\in \mathrm {T} _{p}M} to be normal to S {\displaystyle S} {\displaystyle S} whenever g ( n , v ) = 0 {\displaystyle g(n,v)=0} {\displaystyle g(n,v)=0} for all v T p S {\displaystyle v\in \mathrm {T} _{p}S} {\displaystyle v\in \mathrm {T} _{p}S} (so that n {\displaystyle n} {\displaystyle n} is orthogonal to T p S {\displaystyle \mathrm {T} _{p}S} {\displaystyle \mathrm {T} _{p}S}). The set N p S {\displaystyle \mathrm {N} _{p}S} {\displaystyle \mathrm {N} _{p}S} of all such n {\displaystyle n} {\displaystyle n} is then called the normal space to S {\displaystyle S} {\displaystyle S} at p {\displaystyle p} {\displaystyle p}.

Just as the total space of the tangent bundle to a manifold is constructed from all tangent spaces to the manifold, the total space of the normal bundle[1] N S {\displaystyle \mathrm {N} S} {\displaystyle \mathrm {N} S} to S {\displaystyle S} {\displaystyle S} is defined as

N S := p S N p S {\displaystyle \mathrm {N} S:=\coprod _{p\in S}\mathrm {N} _{p}S} {\displaystyle \mathrm {N} S:=\coprod _{p\in S}\mathrm {N} _{p}S}.

The conormal bundle is defined as the dual bundle to the normal bundle. It can be realised naturally as a sub-bundle of the cotangent bundle.

General definition

[edit ]

More abstractly, given an immersion i : N M {\displaystyle i:N\to M} {\displaystyle i:N\to M} (for instance an embedding), one can define a normal bundle of N {\displaystyle N} {\displaystyle N} in M {\displaystyle M} {\displaystyle M}, by at each point of N {\displaystyle N} {\displaystyle N}, taking the quotient space of the tangent space on M {\displaystyle M} {\displaystyle M} by the tangent space on N {\displaystyle N} {\displaystyle N}. For a Riemannian manifold one can identify this quotient with the orthogonal complement, but in general one cannot (such a choice is equivalent to a section of the projection p : V V / W {\displaystyle p:V\to V/W} {\displaystyle p:V\to V/W}).

Thus the normal bundle is in general a quotient of the tangent bundle of the ambient space M {\displaystyle M} {\displaystyle M} restricted to the subspace N {\displaystyle N} {\displaystyle N}.

Formally, the normal bundle[2] to N {\displaystyle N} {\displaystyle N} in M {\displaystyle M} {\displaystyle M} is a quotient bundle of the tangent bundle on M {\displaystyle M} {\displaystyle M}: one has the short exact sequence of vector bundles on N {\displaystyle N} {\displaystyle N}:

0 T N T M | i ( N ) T M / N := T M | i ( N ) / T N 0 {\displaystyle 0\to \mathrm {T} N\to \mathrm {T} M\vert _{i(N)}\to \mathrm {T} _{M/N}:=\mathrm {T} M\vert _{i(N)}/\mathrm {T} N\to 0} {\displaystyle 0\to \mathrm {T} N\to \mathrm {T} M\vert _{i(N)}\to \mathrm {T} _{M/N}:=\mathrm {T} M\vert _{i(N)}/\mathrm {T} N\to 0}

where T M | i ( N ) {\displaystyle \mathrm {T} M\vert _{i(N)}} {\displaystyle \mathrm {T} M\vert _{i(N)}} is the restriction of the tangent bundle on M {\displaystyle M} {\displaystyle M} to N {\displaystyle N} {\displaystyle N} (properly, the pullback i T M {\displaystyle i^{*}\mathrm {T} M} {\displaystyle i^{*}\mathrm {T} M} of the tangent bundle on M {\displaystyle M} {\displaystyle M} to a vector bundle on N {\displaystyle N} {\displaystyle N} via the map i {\displaystyle i} {\displaystyle i}). The fiber of the normal bundle T M / N π N {\displaystyle \mathrm {T} _{M/N}{\overset {\pi }{\twoheadrightarrow }}N} {\displaystyle \mathrm {T} _{M/N}{\overset {\pi }{\twoheadrightarrow }}N} in p N {\displaystyle p\in N} {\displaystyle p\in N} is referred to as the normal space at p {\displaystyle p} {\displaystyle p} (of N {\displaystyle N} {\displaystyle N} in M {\displaystyle M} {\displaystyle M}).

Conormal bundle

[edit ]

If Y X {\displaystyle Y\subseteq X} {\displaystyle Y\subseteq X} is a smooth submanifold of a manifold X {\displaystyle X} {\displaystyle X}, we can pick local coordinates ( x 1 , , x n ) {\displaystyle (x_{1},\dots ,x_{n})} {\displaystyle (x_{1},\dots ,x_{n})} around p Y {\displaystyle p\in Y} {\displaystyle p\in Y} such that Y {\displaystyle Y} {\displaystyle Y} is locally defined by x k + 1 = = x n = 0 {\displaystyle x_{k+1}=\dots =x_{n}=0} {\displaystyle x_{k+1}=\dots =x_{n}=0}; then with this choice of coordinates

T p X = R { x 1 | p , , x k | p , , x n | p } T p Y = R { x 1 | p , , x k | p } T X / Y p = R { x k + 1 | p , , x n | p } {\displaystyle {\begin{aligned}\mathrm {T} _{p}X&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{k}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{n}}}{\Big |}_{p}{\Big \rbrace }\\\mathrm {T} _{p}Y&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{k}}}{\Big |}_{p}{\Big \rbrace }\\{\mathrm {T} _{X/Y}}_{p}&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{k+1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{n}}}{\Big |}_{p}{\Big \rbrace }\\\end{aligned}}} {\displaystyle {\begin{aligned}\mathrm {T} _{p}X&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{k}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{n}}}{\Big |}_{p}{\Big \rbrace }\\\mathrm {T} _{p}Y&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{k}}}{\Big |}_{p}{\Big \rbrace }\\{\mathrm {T} _{X/Y}}_{p}&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{k+1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{n}}}{\Big |}_{p}{\Big \rbrace }\\\end{aligned}}}

and the ideal sheaf is locally generated by x k + 1 , , x n {\displaystyle x_{k+1},\dots ,x_{n}} {\displaystyle x_{k+1},\dots ,x_{n}}. Therefore we can define a non-degenerate pairing

( I Y / I Y   2 ) p × T X / Y p R {\displaystyle (I_{Y}/I_{Y}^{\ 2})_{p}\times {\mathrm {T} _{X/Y}}_{p}\longrightarrow \mathbb {R} } {\displaystyle (I_{Y}/I_{Y}^{\ 2})_{p}\times {\mathrm {T} _{X/Y}}_{p}\longrightarrow \mathbb {R} }

that induces an isomorphism of sheaves T X / Y ( I Y / I Y   2 ) {\displaystyle \mathrm {T} _{X/Y}\simeq (I_{Y}/I_{Y}^{\ 2})^{\vee }} {\displaystyle \mathrm {T} _{X/Y}\simeq (I_{Y}/I_{Y}^{\ 2})^{\vee }}. We can rephrase this fact by introducing the conormal bundle T X / Y {\displaystyle \mathrm {T} _{X/Y}^{*}} {\displaystyle \mathrm {T} _{X/Y}^{*}} defined via the conormal exact sequence

0 T X / Y Ω X 1 | Y Ω Y 1 0 {\displaystyle 0\to \mathrm {T} _{X/Y}^{*}\rightarrowtail \Omega _{X}^{1}|_{Y}\twoheadrightarrow \Omega _{Y}^{1}\to 0} {\displaystyle 0\to \mathrm {T} _{X/Y}^{*}\rightarrowtail \Omega _{X}^{1}|_{Y}\twoheadrightarrow \Omega _{Y}^{1}\to 0},

then T X / Y ( I Y / I Y   2 ) {\displaystyle \mathrm {T} _{X/Y}^{*}\simeq (I_{Y}/I_{Y}^{\ 2})} {\displaystyle \mathrm {T} _{X/Y}^{*}\simeq (I_{Y}/I_{Y}^{\ 2})}, viz. the sections of the conormal bundle are the cotangent vectors to X {\displaystyle X} {\displaystyle X} vanishing on T Y {\displaystyle \mathrm {T} Y} {\displaystyle \mathrm {T} Y}.

When Y = { p } {\displaystyle Y=\lbrace p\rbrace } {\displaystyle Y=\lbrace p\rbrace } is a point, then the ideal sheaf is the sheaf of smooth germs vanishing at p {\displaystyle p} {\displaystyle p} and the isomorphism reduces to the definition of the tangent space in terms of germs of smooth functions on X {\displaystyle X} {\displaystyle X}

T X / { p } ( T p X ) m p m p   2 {\displaystyle \mathrm {T} _{X/\lbrace p\rbrace }^{*}\simeq (\mathrm {T} _{p}X)^{\vee }\simeq {\frac {{\mathfrak {m}}_{p}}{{\mathfrak {m}}_{p}^{\ 2}}}} {\displaystyle \mathrm {T} _{X/\lbrace p\rbrace }^{*}\simeq (\mathrm {T} _{p}X)^{\vee }\simeq {\frac {{\mathfrak {m}}_{p}}{{\mathfrak {m}}_{p}^{\ 2}}}}.

Stable normal bundle

[edit ]

Abstract manifolds have a canonical tangent bundle, but do not have a normal bundle: only an embedding (or immersion) of a manifold in another yields a normal bundle. However, since every manifold can be embedded in R N {\displaystyle \mathbf {R} ^{N}} {\displaystyle \mathbf {R} ^{N}}, by the Whitney embedding theorem, every manifold admits a normal bundle, given such an embedding.

There is in general no natural choice of embedding, but for a given manifold X {\displaystyle X} {\displaystyle X}, any two embeddings in R N {\displaystyle \mathbf {R} ^{N}} {\displaystyle \mathbf {R} ^{N}} for sufficiently large N {\displaystyle N} {\displaystyle N} are regular homotopic, and hence induce the same normal bundle. The resulting class of normal bundles (it is a class of bundles and not a specific bundle because the integer N {\displaystyle {N}} {\displaystyle {N}} could vary) is called the stable normal bundle.

Dual to tangent bundle

[edit ]

The normal bundle is dual to the tangent bundle in the sense of K-theory: by the above short exact sequence,

[ T N ] + [ T M / N ] = [ T M ] {\displaystyle [\mathrm {T} N]+[\mathrm {T} _{M/N}]=[\mathrm {T} M]} {\displaystyle [\mathrm {T} N]+[\mathrm {T} _{M/N}]=[\mathrm {T} M]}

in the Grothendieck group. In case of an immersion in R N {\displaystyle \mathbf {R} ^{N}} {\displaystyle \mathbf {R} ^{N}}, the tangent bundle of the ambient space is trivial (since R N {\displaystyle \mathbf {R} ^{N}} {\displaystyle \mathbf {R} ^{N}} is contractible, hence parallelizable), so [ T N ] + [ T M / N ] = 0 {\displaystyle [\mathrm {T} N]+[\mathrm {T} _{M/N}]=0} {\displaystyle [\mathrm {T} N]+[\mathrm {T} _{M/N}]=0}, and thus [ T M / N ] = [ T N ] {\displaystyle [\mathrm {T} _{M/N}]=-[\mathrm {T} N]} {\displaystyle [\mathrm {T} _{M/N}]=-[\mathrm {T} N]}.

This is useful in the computation of characteristic classes, and allows one to prove lower bounds on immersibility and embeddability of manifolds in Euclidean space.

For symplectic manifolds

[edit ]

Suppose a manifold X {\displaystyle X} {\displaystyle X} is embedded in to a symplectic manifold ( M , ω ) {\displaystyle (M,\omega )} {\displaystyle (M,\omega )}, such that the pullback of the symplectic form has constant rank on X {\displaystyle X} {\displaystyle X}. Then one can define the symplectic normal bundle to X {\displaystyle X} {\displaystyle X} as the vector bundle over X {\displaystyle X} {\displaystyle X} with fibres

( T i ( x ) X ) ω / ( T i ( x ) X ( T i ( x ) X ) ω ) , x X , {\displaystyle (\mathrm {T} _{i(x)}X)^{\omega }/(\mathrm {T} _{i(x)}X\cap (\mathrm {T} _{i(x)}X)^{\omega }),\quad x\in X,} {\displaystyle (\mathrm {T} _{i(x)}X)^{\omega }/(\mathrm {T} _{i(x)}X\cap (\mathrm {T} _{i(x)}X)^{\omega }),\quad x\in X,}

where i : X M {\displaystyle i:X\rightarrow M} {\displaystyle i:X\rightarrow M} denotes the embedding and ( T X ) ω {\displaystyle (\mathrm {T} X)^{\omega }} {\displaystyle (\mathrm {T} X)^{\omega }} is the symplectic orthogonal of T X {\displaystyle \mathrm {T} X} {\displaystyle \mathrm {T} X} in T M {\displaystyle \mathrm {T} M} {\displaystyle \mathrm {T} M}. Notice that the constant rank condition ensures that these normal spaces fit together to form a bundle. Furthermore, any fibre inherits the structure of a symplectic vector space.[3]

By Darboux's theorem, the constant rank embedding is locally determined by i ( T M ) {\displaystyle i^{*}(\mathrm {T} M)} {\displaystyle i^{*}(\mathrm {T} M)}. The isomorphism

i ( T M ) T X / ν ( T X ) ω / ν ( ν ν ) {\displaystyle i^{*}(\mathrm {T} M)\cong \mathrm {T} X/\nu \oplus (\mathrm {T} X)^{\omega }/\nu \oplus (\nu \oplus \nu ^{*})} {\displaystyle i^{*}(\mathrm {T} M)\cong \mathrm {T} X/\nu \oplus (\mathrm {T} X)^{\omega }/\nu \oplus (\nu \oplus \nu ^{*})}

(where ν = T X ( T X ) ω {\displaystyle \nu =\mathrm {T} X\cap (\mathrm {T} X)^{\omega }} {\displaystyle \nu =\mathrm {T} X\cap (\mathrm {T} X)^{\omega }} and ν {\displaystyle \nu ^{*}} {\displaystyle \nu ^{*}} is the dual under ω {\displaystyle \omega } {\displaystyle \omega },) of symplectic vector bundles over X {\displaystyle X} {\displaystyle X} implies that the symplectic normal bundle already determines the constant rank embedding locally. This feature is similar to the Riemannian case.

References

[edit ]
  1. ^ John M. Lee, Riemannian Manifolds, An Introduction to Curvature, (1997) Springer-Verlag New York, Graduate Texts in Mathematics 176 ISBN 978-0-387-98271-7
  2. ^ Tammo tom Dieck, Algebraic Topology, (2010) EMS Textbooks in Mathematics ISBN 978-3-03719-048-7
  3. ^ Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X
Basic concepts
Main theorems (list)
Maps
Types of
manifolds
Tensors
Vectors
Covectors
Bundles
Connections
Related
Generalizations

AltStyle によって変換されたページ (->オリジナル) /