Jump to content
Wikipedia The Free Encyclopedia

Negation introduction

From Wikipedia, the free encyclopedia
Logical rule of inference
Negation introduction
TypeRule of inference
FieldPropositional calculus
StatementIf a given antecedent implies both the consequent and its complement, then the antecedent is a contradiction.
Symbolic statement ( P Q ) ( P ¬ Q ) ¬ P {\displaystyle (P\rightarrow Q)\land (P\rightarrow \neg Q)\rightarrow \neg P} {\displaystyle (P\rightarrow Q)\land (P\rightarrow \neg Q)\rightarrow \neg P}
Transformation rules
Propositional calculus
Rules of inference (List)
Rules of replacement
Predicate logic
Rules of inference

Negation introduction is a rule of inference, or transformation rule, in the field of propositional calculus.

Negation introduction states that if a given antecedent implies both the consequent and its complement, then the antecedent is a contradiction.[1] [2]

Formal notation

[edit ]

This can be written as:

( ( P Q ) ( P ¬ Q ) ) ¬ P {\displaystyle {\Big (}(P\rightarrow Q)\land (P\rightarrow \neg Q){\Big )}\rightarrow \neg P} {\displaystyle {\Big (}(P\rightarrow Q)\land (P\rightarrow \neg Q){\Big )}\rightarrow \neg P}

An example of its use would be an attempt to prove two contradictory statements from a single fact. For example, if a person were to state "Whenever I hear the phone ringing I am happy" and then state "Whenever I hear the phone ringing I am not happy", one can infer that the person never hears the phone ringing.

Many proofs by contradiction use negation introduction as reasoning scheme: to prove ¬P, assume for contradiction P, then derive from it two contradictory inferences Q and ¬Q. Since the latter contradiction renders P impossible, ¬P must hold.

Proof

[edit ]

With ¬ P {\displaystyle \neg P} {\displaystyle \neg P} identified as P {\displaystyle P\to \bot } {\displaystyle P\to \bot }, the principle is as a special case of Frege's theorem, already in minimal logic.

Another derivation makes use of A ¬ B {\displaystyle A\to \neg B} {\displaystyle A\to \neg B} as the curried, equivalent form of ¬ ( A B ) {\displaystyle \neg (A\land B)} {\displaystyle \neg (A\land B)}. Using this twice, the principle is seen equivalent to the negation of ( P ( P Q ) ) ¬ ( P Q ) {\displaystyle {\big (}P\land (P\to Q){\big )}\land \neg (P\land Q)} {\displaystyle {\big (}P\land (P\to Q){\big )}\land \neg (P\land Q)} which, via modus ponens and rules for conjunctions, is itself equivalent to the valid noncontradiction principle for P Q {\displaystyle P\land Q} {\displaystyle P\land Q}.

A classical derivation passing through the introduction of a disjunction may be given as follows:

Step Proposition Derivation
1 ( P Q ) ( P ¬ Q ) {\displaystyle (P\to Q)\land (P\to \neg Q)} {\displaystyle (P\to Q)\land (P\to \neg Q)} Given
2 ( ¬ P Q ) ( ¬ P ¬ Q ) {\displaystyle (\neg P\lor Q)\land (\neg P\lor \neg Q)} {\displaystyle (\neg P\lor Q)\land (\neg P\lor \neg Q)} Classical equivalence of the material implication
3 ¬ P ( Q ¬ Q ) {\displaystyle \neg P\lor (Q\land \neg Q)} {\displaystyle \neg P\lor (Q\land \neg Q)} Distributivity
4 ¬ P {\displaystyle \neg P\lor \bot } {\displaystyle \neg P\lor \bot } Law of noncontradiction for Q {\displaystyle Q} {\displaystyle Q}
5 ¬ P {\displaystyle \neg P} {\displaystyle \neg P} Disjunctive syllogism (3,4)

See also

[edit ]

References

[edit ]
  1. ^ Wansing, Heinrich, ed. (1996). Negation: A Notion in Focus. Berlin: Walter de Gruyter. ISBN 3110147696.
  2. ^ Haegeman, Lilliane (30 Mar 1995). The Syntax of Negation . Cambridge: Cambridge University Press. p. 70. ISBN 0521464927.

AltStyle によって変換されたページ (->オリジナル) /