Multilinear map
Find sources: "Multilinear map" – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message)
In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function
- {\displaystyle f\colon V_{1}\times \cdots \times V_{n}\to W{\text{,}}}
where {\displaystyle V_{1},\ldots ,V_{n}} ({\displaystyle n\in \mathbb {Z} _{\geq 0}}) and {\displaystyle W} are vector spaces (or modules over a commutative ring), with the following property: for each {\displaystyle i}, if all of the variables but {\displaystyle v_{i}} are held constant, then {\displaystyle f(v_{1},\ldots ,v_{i},\ldots ,v_{n})} is a linear function of {\displaystyle v_{i}}.[1] One way to visualize this is to imagine two orthogonal vectors; if one of these vectors is scaled by a factor of 2 while the other remains unchanged, the cross product likewise scales by a factor of two. If both are scaled by a factor of 2, the cross product scales by a factor of {\displaystyle 2^{2}}.
A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer {\displaystyle k}, a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra.
If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating k-linear maps. The latter two coincide if the underlying ring (or field) has a characteristic different from two, else the former two coincide.
Examples
[edit ]- Any bilinear map is a multilinear map. For example, any inner product on a {\displaystyle \mathbb {R} }-vector space is a multilinear map, as is the cross product of vectors in {\displaystyle \mathbb {R} ^{3}}.
- The determinant of a square matrix is a multilinear function of the columns (or rows); it is also an alternating function of the columns (or rows).
- If {\displaystyle F\colon \mathbb {R} ^{m}\to \mathbb {R} ^{n}} is a Ck function, then the {\displaystyle k}th derivative of {\displaystyle F} at each point {\displaystyle p} in its domain can be viewed as a symmetric {\displaystyle k}-linear function {\displaystyle D^{k}\!F\colon \mathbb {R} ^{m}\times \cdots \times \mathbb {R} ^{m}\to \mathbb {R} ^{n}}.[citation needed ]
Coordinate representation
[edit ]Let
- {\displaystyle f\colon V_{1}\times \cdots \times V_{n}\to W{\text{,}}}
be a multilinear map between finite-dimensional vector spaces, where {\displaystyle V_{i}\!} has dimension {\displaystyle d_{i}\!}, and {\displaystyle W\!} has dimension {\displaystyle d\!}. If we choose a basis {\displaystyle \{{\textbf {e}}_{i1},\ldots ,{\textbf {e}}_{id_{i}}\}} for each {\displaystyle V_{i}\!} and a basis {\displaystyle \{{\textbf {b}}_{1},\ldots ,{\textbf {b}}_{d}\}} for {\displaystyle W\!} (using bold for vectors), then we can define a collection of scalars {\displaystyle A_{j_{1}\cdots j_{n}}^{k}} by
- {\displaystyle f({\textbf {e}}_{1j_{1}},\ldots ,{\textbf {e}}_{nj_{n}})=A_{j_{1}\cdots j_{n}}^{1},円{\textbf {b}}_{1}+\cdots +A_{j_{1}\cdots j_{n}}^{d},円{\textbf {b}}_{d}.}
Then the scalars {\displaystyle \{A_{j_{1}\cdots j_{n}}^{k}\mid 1\leq j_{i}\leq d_{i},1\leq k\leq d\}} completely determine the multilinear function {\displaystyle f\!}. In particular, if
- {\displaystyle {\textbf {v}}_{i}=\sum _{j=1}^{d_{i}}v_{ij}{\textbf {e}}_{ij}\!}
for {\displaystyle 1\leq i\leq n\!}, then
- {\displaystyle f({\textbf {v}}_{1},\ldots ,{\textbf {v}}_{n})=\sum _{j_{1}=1}^{d_{1}}\cdots \sum _{j_{n}=1}^{d_{n}}\sum _{k=1}^{d}A_{j_{1}\cdots j_{n}}^{k}v_{1j_{1}}\cdots v_{nj_{n}}{\textbf {b}}_{k}.}
Example
[edit ]Let's take a trilinear function
- {\displaystyle g\colon R^{2}\times R^{2}\times R^{2}\to R,}
where Vi = R2, di = 2, i = 1,2,3, and W = R, d = 1.
A basis for each Vi is {\displaystyle \{{\textbf {e}}_{i1},\ldots ,{\textbf {e}}_{id_{i}}\}=\{{\textbf {e}}_{1},{\textbf {e}}_{2}\}=\{(1,0),(0,1)\}.} Let
- {\displaystyle g({\textbf {e}}_{1i},{\textbf {e}}_{2j},{\textbf {e}}_{3k})=f({\textbf {e}}_{i},{\textbf {e}}_{j},{\textbf {e}}_{k})=A_{ijk},}
where {\displaystyle i,j,k\in \{1,2\}}. In other words, the constant {\displaystyle A_{ijk}} is a function value at one of the eight possible triples of basis vectors (since there are two choices for each of the three {\displaystyle V_{i}}), namely:
- {\displaystyle \{{\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{1}\},\{{\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{2}\},\{{\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{1}\},\{{\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{2}\},\{{\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{1}\},\{{\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{2}\},\{{\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{1}\},\{{\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{2}\}.}
Each vector {\displaystyle {\textbf {v}}_{i}\in V_{i}=R^{2}} can be expressed as a linear combination of the basis vectors
- {\displaystyle {\textbf {v}}_{i}=\sum _{j=1}^{2}v_{ij}{\textbf {e}}_{ij}=v_{i1}\times {\textbf {e}}_{1}+v_{i2}\times {\textbf {e}}_{2}=v_{i1}\times (1,0)+v_{i2}\times (0,1).}
The function value at an arbitrary collection of three vectors {\displaystyle {\textbf {v}}_{i}\in R^{2}} can be expressed as
- {\displaystyle g({\textbf {v}}_{1},{\textbf {v}}_{2},{\textbf {v}}_{3})=\sum _{i=1}^{2}\sum _{j=1}^{2}\sum _{k=1}^{2}A_{ijk}v_{1i}v_{2j}v_{3k},}
or in expanded form as
- {\displaystyle {\begin{aligned}g((a,b),(c,d)&,(e,f))=ace\times g({\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{1})+acf\times g({\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{2})\\&+ade\times g({\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{1})+adf\times g({\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{2})+bce\times g({\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{1})+bcf\times g({\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{2})\\&+bde\times g({\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{1})+bdf\times g({\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{2}).\end{aligned}}}
Relation to tensor products
[edit ]There is a natural one-to-one correspondence between multilinear maps
- {\displaystyle f\colon V_{1}\times \cdots \times V_{n}\to W{\text{,}}}
and linear maps
- {\displaystyle F\colon V_{1}\otimes \cdots \otimes V_{n}\to W{\text{,}}}
where {\displaystyle V_{1}\otimes \cdots \otimes V_{n}\!} denotes the tensor product of {\displaystyle V_{1},\ldots ,V_{n}}. The relation between the functions {\displaystyle f} and {\displaystyle F} is given by the formula
- {\displaystyle f(v_{1},\ldots ,v_{n})=F(v_{1}\otimes \cdots \otimes v_{n}).}
One can consider multilinear functions, on an n×n matrix over a commutative ring K with identity, as a function of the rows (or equivalently the columns) of the matrix. Let A be such a matrix and ai, 1 ≤ i ≤ n, be the rows of A. Then the multilinear function D can be written as
- {\displaystyle D(A)=D(a_{1},\ldots ,a_{n}),}
satisfying
- {\displaystyle D(a_{1},\ldots ,ca_{i}+a_{i}',\ldots ,a_{n})=cD(a_{1},\ldots ,a_{i},\ldots ,a_{n})+D(a_{1},\ldots ,a_{i}',\ldots ,a_{n}).}
If we let {\displaystyle {\hat {e}}_{j}} represent the jth row of the identity matrix, we can express each row ai as the sum
- {\displaystyle a_{i}=\sum _{j=1}^{n}A(i,j){\hat {e}}_{j}.}
Using the multilinearity of D we rewrite D(A) as
- {\displaystyle D(A)=D\left(\sum _{j=1}^{n}A(1,j){\hat {e}}_{j},a_{2},\ldots ,a_{n}\right)=\sum _{j=1}^{n}A(1,j)D({\hat {e}}_{j},a_{2},\ldots ,a_{n}).}
Continuing this substitution for each ai we get, for 1 ≤ i ≤ n,
- {\displaystyle D(A)=\sum _{1\leq k_{1}\leq n}\ldots \sum _{1\leq k_{i}\leq n}\ldots \sum _{1\leq k_{n}\leq n}A(1,k_{1})A(2,k_{2})\dots A(n,k_{n})D({\hat {e}}_{k_{1}},\dots ,{\hat {e}}_{k_{n}}).}
Therefore, D(A) is uniquely determined by how D operates on {\displaystyle {\hat {e}}_{k_{1}},\dots ,{\hat {e}}_{k_{n}}}.
Example
[edit ]In the case of 2×2 matrices, we get
- {\displaystyle D(A)=A_{1,1}A_{1,2}D({\hat {e}}_{1},{\hat {e}}_{1})+A_{1,1}A_{2,2}D({\hat {e}}_{1},{\hat {e}}_{2})+A_{1,2}A_{2,1}D({\hat {e}}_{2},{\hat {e}}_{1})+A_{1,2}A_{2,2}D({\hat {e}}_{2},{\hat {e}}_{2}),,円}
where {\displaystyle {\hat {e}}_{1}=[1,0]} and {\displaystyle {\hat {e}}_{2}=[0,1]}. If we restrict {\displaystyle D} to be an alternating function, then {\displaystyle D({\hat {e}}_{1},{\hat {e}}_{1})=D({\hat {e}}_{2},{\hat {e}}_{2})=0} and {\displaystyle D({\hat {e}}_{2},{\hat {e}}_{1})=-D({\hat {e}}_{1},{\hat {e}}_{2})=-D(I)}. Letting {\displaystyle D(I)=1}, we get the determinant function on 2×2 matrices:
- {\displaystyle D(A)=A_{1,1}A_{2,2}-A_{1,2}A_{2,1}.}
Properties
[edit ]- A multilinear map has a value of zero whenever one of its arguments is zero.
See also
[edit ]References
[edit ]- ^ Lang, Serge (2005) [2002]. "XIII. Matrices and Linear Maps §S Determinants". Algebra. Graduate Texts in Mathematics. Vol. 211 (3rd ed.). Springer. pp. 511–. ISBN 978-0-387-95385-4.