Jump to content
Wikipedia The Free Encyclopedia

Modulus (algebraic number theory)

From Wikipedia, the free encyclopedia
For the operation that gives a number's remainder, see Modulo operation.

In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle,[1] or extended ideal[2] ) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.

Definition

[edit ]

Let K be a global field with ring of integers R. A modulus is a formal product[3] [4]

m = p p ν ( p ) , ν ( p ) 0 {\displaystyle \mathbf {m} =\prod _{\mathbf {p} }\mathbf {p} ^{\nu (\mathbf {p} )},,円,円\nu (\mathbf {p} )\geq 0} {\displaystyle \mathbf {m} =\prod _{\mathbf {p} }\mathbf {p} ^{\nu (\mathbf {p} )},,円,円\nu (\mathbf {p} )\geq 0}

where p runs over all places of K, finite or infinite, the exponents ν(p) are zero except for finitely many p. If K is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If K is a function field, ν(p) = 0 for all infinite places.

In the function field case, a modulus is the same thing as an effective divisor,[5] and in the number field case, a modulus can be considered as special form of Arakelov divisor.[6]

The notion of congruence can be extended to the setting of moduli. If a and b are elements of K×ばつ, the definition of a ≡b (mod pν) depends on what type of prime p is:[7] [8]

  • if it is finite, then
a b ( m o d p ν ) o r d p ( a b 1 ) ν {\displaystyle a\equiv ^{\ast }\!b,円(\mathrm {mod} ,円\mathbf {p} ^{\nu })\Leftrightarrow \mathrm {ord} _{\mathbf {p} }\left({\frac {a}{b}}-1\right)\geq \nu } {\displaystyle a\equiv ^{\ast }\!b,円(\mathrm {mod} ,円\mathbf {p} ^{\nu })\Leftrightarrow \mathrm {ord} _{\mathbf {p} }\left({\frac {a}{b}}-1\right)\geq \nu }
where ordp is the normalized valuation associated to p;
  • if it is a real place (of a number field) and ν = 1, then
a b ( m o d p ) a b > 0 {\displaystyle a\equiv ^{\ast }\!b,円(\mathrm {mod} ,円\mathbf {p} )\Leftrightarrow {\frac {a}{b}}>0} {\displaystyle a\equiv ^{\ast }\!b,円(\mathrm {mod} ,円\mathbf {p} )\Leftrightarrow {\frac {a}{b}}>0}
under the real embedding associated to p.
  • if it is any other infinite place, there is no condition.

Then, given a modulus m, a ≡b (mod m) if a ≡b (mod pν(p)) for all p such that ν(p) > 0.

Ray class group

[edit ]
Main article: Ray class group

The ray modulo m is[9] [10] [11]

K m , 1 = { a K × : a 1 ( m o d m ) } . {\displaystyle K_{\mathbf {m} ,1}=\left\{a\in K^{\times }:a\equiv ^{\ast }\!1,円(\mathrm {mod} ,円\mathbf {m} )\right\}.} {\displaystyle K_{\mathbf {m} ,1}=\left\{a\in K^{\times }:a\equiv ^{\ast }\!1,円(\mathrm {mod} ,円\mathbf {m} )\right\}.}

A modulus m can be split into two parts, mf and m, the product over the finite and infinite places, respectively. Let Im to be one of the following:

In both case, there is a group homomorphism i : Km,1Im obtained by sending a to the principal ideal (resp. divisor) (a).

The ray class group modulo m is the quotient Cm = Im / i(Km,1).[14] [15] A coset of i(Km,1) is called a ray class modulo m.

Erich Hecke's original definition of Hecke characters may be interpreted in terms of characters of the ray class group with respect to some modulus m.[16]

Properties

[edit ]

When K is a number field, the following properties hold.[17]

  • When m = 1, the ray class group is just the ideal class group.
  • The ray class group is finite. Its order is the ray class number.
  • The ray class number is divisible by the class number of K.

Notes

[edit ]
  1. ^ Lang 1994, §VI.1
  2. ^ Cohn 1985, definition 7.2.1
  3. ^ Janusz 1996, §IV.1
  4. ^ Serre 1988, §III.1
  5. ^ Serre 1988, §III.1
  6. ^ Neukirch 1999, §III.1
  7. ^ Janusz 1996, §IV.1
  8. ^ Serre 1988, §III.1
  9. ^ Milne 2008, §V.1
  10. ^ Janusz 1996, §IV.1
  11. ^ Serre 1988, §VI.6
  12. ^ Janusz 1996, §IV.1
  13. ^ Serre 1988, §V.1
  14. ^ Janusz 1996, §IV.1
  15. ^ Serre 1988, §VI.6
  16. ^ Neukirch 1999, §VII.6
  17. ^ Janusz 1996, §4.1

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /