Jump to content
Wikipedia The Free Encyclopedia

Mixture-space theorem

From Wikipedia, the free encyclopedia
Utility-representation theorem in Decision Theory

In microeconomic theory and decision theory, the Mixture-space theorem is a utility-representation theorem for preferences defined over general mixture spaces.

The theorem generalizes the von Neumann–Morgenstern utility theorem and the usual utility-representation theorem for consumer preferences over R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}}. It was first proven by Israel Nathan Herstein and John Milnor in 1953,[1] together with the introduction of the definition of a mixture space.

Mixture spaces

[edit ]

Definition

[edit ]

Mixture spaces, as introduced by Herstein and Milnor, are a generalization of convex sets from vector spaces. Formally:

Definition: A mixture space is a pair ( X , h ) {\displaystyle (X,h)} {\displaystyle (X,h)}, where

  • X {\displaystyle X} {\displaystyle X} is just any set, and
  • h : [ 0 , 1 ] × X × X R {\displaystyle h:[0,1]\times X\times X\to \mathbb {R} } {\displaystyle h:[0,1]\times X\times X\to \mathbb {R} } is a mixture function: it associates with each α [ 0 , 1 ] {\displaystyle \alpha \in [0,1]} {\displaystyle \alpha \in [0,1]} and each pair x , y X × X {\displaystyle x,y\in X\times X} {\displaystyle x,y\in X\times X} the α {\displaystyle \alpha } {\displaystyle \alpha }-mixture of the two, h α ( x , y ) h ( α , x , y ) {\displaystyle h_{\alpha }(x,y)\equiv h(\alpha ,x,y)} {\displaystyle h_{\alpha }(x,y)\equiv h(\alpha ,x,y)}, such that
  1. h 1 ( x , y ) = x {\displaystyle h_{1}(x,y)=x} {\displaystyle h_{1}(x,y)=x}.
  2. h α ( x , y ) = h 1 α ( y , x ) {\displaystyle h_{\alpha }(x,y)=h_{1-\alpha }(y,x)} {\displaystyle h_{\alpha }(x,y)=h_{1-\alpha }(y,x)}.
  3. h α ( h β ( x , y ) , y ) = h α β ( x , y ) {\displaystyle h_{\alpha }(h_{\beta }(x,y),y)=h_{\alpha \beta }(x,y)} {\displaystyle h_{\alpha }(h_{\beta }(x,y),y)=h_{\alpha \beta }(x,y)}.

Mixture spaces are essentially a special case of convex spaces (also called barycentric algebras),[2] where the mixing operation is restricted to be over [ 0 , 1 ] {\displaystyle [0,1]} {\displaystyle [0,1]} and not just an appropriately closed subset of a semiring.

Examples

[edit ]

Some examples and non-examples of mixture spaces are:

  • Vector spaces: any convex subset X {\displaystyle X} {\displaystyle X} of a vector space ( V , + , ) {\displaystyle (V,+,\cdot )} {\displaystyle (V,+,\cdot )} over R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} }, with h α ( x , y ) = α x + ( 1 α ) y {\displaystyle h_{\alpha }(x,y)=\alpha x+(1-\alpha )y} {\displaystyle h_{\alpha }(x,y)=\alpha x+(1-\alpha )y} constitutes a mixture space ( X , h ) {\displaystyle (X,h)} {\displaystyle (X,h)}.
  • Lotteries: given any finite set X {\displaystyle X} {\displaystyle X}, the set L ( x ) = { p : X [ 0 , 1 ] : x p ( x ) = 1 } {\displaystyle {\mathcal {L}}(x)=\left\{p:X\to [0,1]:\sum _{x}p(x)=1\right\}} {\displaystyle {\mathcal {L}}(x)=\left\{p:X\to [0,1]:\sum _{x}p(x)=1\right\}} of lotteries over X {\displaystyle X} {\displaystyle X} constitutes a mixture space, with h α ( p , q ) ( x ) := α p ( x ) + ( 1 α ) q ( x ) {\displaystyle h_{\alpha }(p,q)(x):=\alpha p(x)+(1-\alpha )q(x)} {\displaystyle h_{\alpha }(p,q)(x):=\alpha p(x)+(1-\alpha )q(x)}. Notice that this induces an "isomorphic" mixture space of CDFs over X {\displaystyle X} {\displaystyle X}, with the naturally-induced mixture function.
  • Quantile functions: for any CDF F : R [ 0 , 1 ] {\displaystyle F:\mathbb {R} \to [0,1]} {\displaystyle F:\mathbb {R} \to [0,1]}, define Q F : [ 0 , 1 ] R {\displaystyle Q_{F}:[0,1]\to \mathbb {R} } {\displaystyle Q_{F}:[0,1]\to \mathbb {R} } as its quantile function. For any two CDFs F 1 , F 2 {\displaystyle F_{1},F_{2}} {\displaystyle F_{1},F_{2}} and any α [ 0 , 1 ] {\displaystyle \alpha \in [0,1]} {\displaystyle \alpha \in [0,1]}, define the mixture operation α F 1 ( 1 α ) F 2 {\displaystyle \alpha F_{1}\boxplus (1-\alpha )F_{2}} {\displaystyle \alpha F_{1}\boxplus (1-\alpha )F_{2}} as the CDF for the quantile function α Q F 1 + ( 1 α ) Q F 2 {\displaystyle \alpha Q_{F_{1}}+(1-\alpha )Q_{F_{2}}} {\displaystyle \alpha Q_{F_{1}}+(1-\alpha )Q_{F_{2}}}. This does not define a mixture over CDFs, but it does define a mixture over quantile functions.[3]

Axioms and theorem

[edit ]

Axioms

[edit ]

Herstein and Milnor proposed the following axioms for preferences {\displaystyle \succsim } {\displaystyle \succsim } over X {\displaystyle X} {\displaystyle X} when ( X , h ) {\displaystyle (X,h)} {\displaystyle (X,h)} is a mixture space:

  • Axiom 1 (Preference Relation): {\displaystyle \succsim } {\displaystyle \succsim } is a weak order, in the sense that it is complete (for all x , y X {\displaystyle x,y\in X} {\displaystyle x,y\in X}, it's true that x y {\displaystyle x\succsim y} {\displaystyle x\succsim y} or y x {\displaystyle y\succsim x} {\displaystyle y\succsim x}) and transitive.
  • Axiom 2 (Independence): For any x , y , z X {\displaystyle x,y,z\in X} {\displaystyle x,y,z\in X},
x y h 1 / 2 ( x , z ) h 1 / 2 ( y , z ) . {\displaystyle x\sim y\implies h_{1/2}(x,z)\sim h_{1/2}(y,z).} {\displaystyle x\sim y\implies h_{1/2}(x,z)\sim h_{1/2}(y,z).}[nb 1]
  • Axiom 3 (Mixture Continuity): for any x , y , z X {\displaystyle x,y,z\in X} {\displaystyle x,y,z\in X}, the sets
{ α [ 0 , 1 ] : h α ( x , y ) z } , {\displaystyle \{\alpha \in [0,1]:h_{\alpha }(x,y)\succsim z\},} {\displaystyle \{\alpha \in [0,1]:h_{\alpha }(x,y)\succsim z\},}
{ α [ 0 , 1 ] : h α ( x , y ) z } {\displaystyle \{\alpha \in [0,1]:h_{\alpha }(x,y)\precsim z\}} {\displaystyle \{\alpha \in [0,1]:h_{\alpha }(x,y)\precsim z\}}

are closed in [ 0 , 1 ] {\displaystyle [0,1]} {\displaystyle [0,1]} with the usual topology.

The Mixture-Continuity Axiom is a way of introducing some form of continuity for the preferences without having to consider a topological structure over X {\displaystyle X} {\displaystyle X}.[1]

Theorem

[edit ]

Theorem (Herstein & Milnor 1953): Given any mixture space ( X , h ) {\displaystyle (X,h)} {\displaystyle (X,h)} and a preference relation {\displaystyle \succsim } {\displaystyle \succsim } over X {\displaystyle X} {\displaystyle X}, the following are equivalent:

  • {\displaystyle \succsim } {\displaystyle \succsim } satisfies Axioms 1, 2, and 3.
  • There exists a mixture-preserving utility function U : X R {\displaystyle U:X\to \mathbb {R} } {\displaystyle U:X\to \mathbb {R} } that represents {\displaystyle \succsim } {\displaystyle \succsim }, where "mixture-preserving" represents a form of linearity: for any x , y X {\displaystyle x,y\in X} {\displaystyle x,y\in X} and any α [ 0 , 1 ] {\displaystyle \alpha \in [0,1]} {\displaystyle \alpha \in [0,1]},
U ( h α ( x , y ) ) = α U ( x ) + ( 1 α ) U ( y ) {\displaystyle U(h_{\alpha }(x,y))=\alpha U(x)+(1-\alpha )U(y)} {\displaystyle U(h_{\alpha }(x,y))=\alpha U(x)+(1-\alpha )U(y)}.

Notes

[edit ]
  1. ^ This version of the Indepence Axiom is equivalent to the more usual one of von Neumann-Morgenstern which requires a general α [ 0 , 1 ] {\displaystyle \alpha \in [0,1]} {\displaystyle \alpha \in [0,1]} instead of just α = 1 / 2 {\displaystyle \alpha =1/2} {\displaystyle \alpha =1/2}.[1]

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /