Jump to content
Wikipedia The Free Encyclopedia

Mixed tensor

From Wikipedia, the free encyclopedia
Tensor having both covariant and contravariant indices
"Tensor type" redirects here. For the array data type, see Tensor type (computing).
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations . Please help improve this article by introducing more precise citations. (October 2021) (Learn how and when to remove this message)

In tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant).

A mixed tensor of type or valence ( M N ) {\textstyle {\binom {M}{N}}} {\textstyle {\binom {M}{N}}}, also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.

Changing the tensor type

[edit ]

Consider the following octet of related tensors: T α β γ ,   T α β γ ,   T α β γ ,   T α β γ ,   T α β γ ,   T α β γ ,   T α β γ ,   T α β γ . {\displaystyle T_{\alpha \beta \gamma },\ T_{\alpha \beta }{}^{\gamma },\ T_{\alpha }{}^{\beta }{}_{\gamma },\ T_{\alpha }{}^{\beta \gamma },\ T^{\alpha }{}_{\beta \gamma },\ T^{\alpha }{}_{\beta }{}^{\gamma },\ T^{\alpha \beta }{}_{\gamma },\ T^{\alpha \beta \gamma }.} {\displaystyle T_{\alpha \beta \gamma },\ T_{\alpha \beta }{}^{\gamma },\ T_{\alpha }{}^{\beta }{}_{\gamma },\ T_{\alpha }{}^{\beta \gamma },\ T^{\alpha }{}_{\beta \gamma },\ T^{\alpha }{}_{\beta }{}^{\gamma },\ T^{\alpha \beta }{}_{\gamma },\ T^{\alpha \beta \gamma }.} The first one is covariant, the last one contravariant, and the remaining ones mixed. Notationally, these tensors differ from each other by the covariance/contravariance of their indices. A given contravariant index of a tensor can be lowered using the metric tensor gμν, and a given covariant index can be raised using the inverse metric tensor gμν. Thus, gμν could be called the index lowering operator and gμν the index raising operator.

Generally, the covariant metric tensor, contracted with a tensor of type (M, N), yields a tensor of type (M − 1, N + 1), whereas its contravariant inverse, contracted with a tensor of type (M, N), yields a tensor of type (M + 1, N − 1).

Examples

[edit ]

As an example, a mixed tensor of type (1, 2) can be obtained by raising an index of a covariant tensor of type (0, 3), T α β λ = T α β γ g γ λ , {\displaystyle T_{\alpha \beta }{}^{\lambda }=T_{\alpha \beta \gamma },円g^{\gamma \lambda },} {\displaystyle T_{\alpha \beta }{}^{\lambda }=T_{\alpha \beta \gamma },円g^{\gamma \lambda },} where T α β λ {\displaystyle T_{\alpha \beta }{}^{\lambda }} {\displaystyle T_{\alpha \beta }{}^{\lambda }} is the same tensor as T α β γ {\displaystyle T_{\alpha \beta }{}^{\gamma }} {\displaystyle T_{\alpha \beta }{}^{\gamma }}, because T α β λ δ λ γ = T α β γ , {\displaystyle T_{\alpha \beta }{}^{\lambda },円\delta _{\lambda }{}^{\gamma }=T_{\alpha \beta }{}^{\gamma },} {\displaystyle T_{\alpha \beta }{}^{\lambda },円\delta _{\lambda }{}^{\gamma }=T_{\alpha \beta }{}^{\gamma },} with Kronecker δ acting here like an identity matrix.

Likewise, T α λ γ = T α β γ g β λ , {\displaystyle T_{\alpha }{}^{\lambda }{}_{\gamma }=T_{\alpha \beta \gamma },円g^{\beta \lambda },} {\displaystyle T_{\alpha }{}^{\lambda }{}_{\gamma }=T_{\alpha \beta \gamma },円g^{\beta \lambda },} T α λ ϵ = T α β γ g β λ g γ ϵ , {\displaystyle T_{\alpha }{}^{\lambda \epsilon }=T_{\alpha \beta \gamma },円g^{\beta \lambda },円g^{\gamma \epsilon },} {\displaystyle T_{\alpha }{}^{\lambda \epsilon }=T_{\alpha \beta \gamma },円g^{\beta \lambda },円g^{\gamma \epsilon },} T α β γ = g γ λ T α β λ , {\displaystyle T^{\alpha \beta }{}_{\gamma }=g_{\gamma \lambda },円T^{\alpha \beta \lambda },} {\displaystyle T^{\alpha \beta }{}_{\gamma }=g_{\gamma \lambda },円T^{\alpha \beta \lambda },} T α λ ϵ = g λ β g ϵ γ T α β γ . {\displaystyle T^{\alpha }{}_{\lambda \epsilon }=g_{\lambda \beta },円g_{\epsilon \gamma },円T^{\alpha \beta \gamma }.} {\displaystyle T^{\alpha }{}_{\lambda \epsilon }=g_{\lambda \beta },円g_{\epsilon \gamma },円T^{\alpha \beta \gamma }.}

Raising an index of the metric tensor is equivalent to contracting it with its inverse, yielding the Kronecker delta, g μ λ g λ ν = g μ ν = δ μ ν , {\displaystyle g^{\mu \lambda },円g_{\lambda \nu }=g^{\mu }{}_{\nu }=\delta ^{\mu }{}_{\nu },} {\displaystyle g^{\mu \lambda },円g_{\lambda \nu }=g^{\mu }{}_{\nu }=\delta ^{\mu }{}_{\nu },} so any mixed version of the metric tensor will be equal to the Kronecker delta, which will also be mixed.

See also

[edit ]

References

[edit ]
[edit ]
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians

AltStyle によって変換されたページ (->オリジナル) /