Jump to content
Wikipedia The Free Encyclopedia

Mixed Poisson process

From Wikipedia, the free encyclopedia

In probability theory, a mixed Poisson process is a special point process that is a generalization of a Poisson process. Mixed Poisson processes are simple example for Cox processes.

Definition

[edit ]

Let μ {\displaystyle \mu } {\displaystyle \mu } be a locally finite measure on S {\displaystyle S} {\displaystyle S} and let X {\displaystyle X} {\displaystyle X} be a random variable with X 0 {\displaystyle X\geq 0} {\displaystyle X\geq 0} almost surely.

Then a random measure ξ {\displaystyle \xi } {\displaystyle \xi } on S {\displaystyle S} {\displaystyle S} is called a mixed Poisson process based on μ {\displaystyle \mu } {\displaystyle \mu } and X {\displaystyle X} {\displaystyle X} iff ξ {\displaystyle \xi } {\displaystyle \xi } conditionally on X = x {\displaystyle X=x} {\displaystyle X=x} is a Poisson process on S {\displaystyle S} {\displaystyle S} with intensity measure x μ {\displaystyle x\mu } {\displaystyle x\mu }.

Comment

[edit ]

Mixed Poisson processes are doubly stochastic in the sense that in a first step, the value of the random variable X {\displaystyle X} {\displaystyle X} is determined. This value then determines the "second order stochasticity" by increasing or decreasing the original intensity measure μ {\displaystyle \mu } {\displaystyle \mu }.

Properties

[edit ]

Conditional on X = x {\displaystyle X=x} {\displaystyle X=x} mixed Poisson processes have the intensity measure x μ {\displaystyle x\mu } {\displaystyle x\mu } and the Laplace transform

L ( f ) = exp ( 1 exp ( f ( y ) ) ( x μ ) ( d y ) ) {\displaystyle {\mathcal {L}}(f)=\exp \left(-\int 1-\exp(-f(y))\;(x\mu )(\mathrm {d} y)\right)} {\displaystyle {\mathcal {L}}(f)=\exp \left(-\int 1-\exp(-f(y))\;(x\mu )(\mathrm {d} y)\right)}.

Sources

[edit ]

AltStyle によって変換されたページ (->オリジナル) /