Jump to content
Wikipedia The Free Encyclopedia

Milstein method

From Wikipedia, the free encyclopedia
Numerical method for solving stochastic differential equations

In mathematics, the Milstein method is a technique for the approximate numerical solution of a stochastic differential equation. It is named after Grigori Milstein who first published it in 1974.[1] [2]

Description

[edit ]

Consider the autonomous Itō stochastic differential equation: d X t = a ( X t ) d t + b ( X t ) d W t {\displaystyle \mathrm {d} X_{t}=a(X_{t}),円\mathrm {d} t+b(X_{t}),円\mathrm {d} W_{t}} {\displaystyle \mathrm {d} X_{t}=a(X_{t}),円\mathrm {d} t+b(X_{t}),円\mathrm {d} W_{t}} with initial condition X 0 = x 0 {\displaystyle X_{0}=x_{0}} {\displaystyle X_{0}=x_{0}}, where W t {\displaystyle W_{t}} {\displaystyle W_{t}} denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time  [ 0 , T ] {\displaystyle [0,T]} {\displaystyle [0,T]}. Then the Milstein approximation to the true solution X {\displaystyle X} {\displaystyle X} is the Markov chain Y {\displaystyle Y} {\displaystyle Y} defined as follows:

  • Partition the interval [ 0 , T ] {\displaystyle [0,T]} {\displaystyle [0,T]} into N {\displaystyle N} {\displaystyle N} equal subintervals of width Δ t > 0 {\displaystyle \Delta t>0} {\displaystyle \Delta t>0}: 0 = τ 0 < τ 1 < < τ N = T  with  τ n := n Δ t  and  Δ t = T N {\displaystyle 0=\tau _{0}<\tau _{1}<\dots <\tau _{N}=T{\text{ with }}\tau _{n}:=n\Delta t{\text{ and }}\Delta t={\frac {T}{N}}} {\displaystyle 0=\tau _{0}<\tau _{1}<\dots <\tau _{N}=T{\text{ with }}\tau _{n}:=n\Delta t{\text{ and }}\Delta t={\frac {T}{N}}}
  • Set Y 0 = x 0 ; {\displaystyle Y_{0}=x_{0};} {\displaystyle Y_{0}=x_{0};}
  • Recursively define Y n {\displaystyle Y_{n}} {\displaystyle Y_{n}} for 1 n N {\displaystyle 1\leq n\leq N} {\displaystyle 1\leq n\leq N} by: Y n + 1 = Y n + a ( Y n ) Δ t + b ( Y n ) Δ W n + 1 2 b ( Y n ) b ( Y n ) ( ( Δ W n ) 2 Δ t ) {\displaystyle Y_{n+1}=Y_{n}+a(Y_{n})\Delta t+b(Y_{n})\Delta W_{n}+{\frac {1}{2}}b(Y_{n})b'(Y_{n})\left((\Delta W_{n})^{2}-\Delta t\right)} {\displaystyle Y_{n+1}=Y_{n}+a(Y_{n})\Delta t+b(Y_{n})\Delta W_{n}+{\frac {1}{2}}b(Y_{n})b'(Y_{n})\left((\Delta W_{n})^{2}-\Delta t\right)} where b {\displaystyle b'} {\displaystyle b'} denotes the derivative of b ( x ) {\displaystyle b(x)} {\displaystyle b(x)} with respect to x {\displaystyle x} {\displaystyle x} and: Δ W n = W τ n + 1 W τ n {\displaystyle \Delta W_{n}=W_{\tau _{n+1}}-W_{\tau _{n}}} {\displaystyle \Delta W_{n}=W_{\tau _{n+1}}-W_{\tau _{n}}} are independent and identically distributed normal random variables with expected value zero and variance Δ t {\displaystyle \Delta t} {\displaystyle \Delta t}. Then Y n {\displaystyle Y_{n}} {\displaystyle Y_{n}} will approximate X τ n {\displaystyle X_{\tau _{n}}} {\displaystyle X_{\tau _{n}}} for 0 n N {\displaystyle 0\leq n\leq N} {\displaystyle 0\leq n\leq N}, and increasing N {\displaystyle N} {\displaystyle N} will yield a better approximation.

Note that when b ( Y n ) = 0 {\displaystyle b'(Y_{n})=0} {\displaystyle b'(Y_{n})=0} (i.e. the diffusion term does not depend on X t {\displaystyle X_{t}} {\displaystyle X_{t}}) this method is equivalent to the Euler–Maruyama method.

The Milstein scheme has both weak and strong order of convergence Δ t {\displaystyle \Delta t} {\displaystyle \Delta t} which is superior to the Euler–Maruyama method, which in turn has the same weak order of convergence Δ t {\displaystyle \Delta t} {\displaystyle \Delta t} but inferior strong order of convergence Δ t {\displaystyle {\sqrt {\Delta t}}} {\displaystyle {\sqrt {\Delta t}}}.[3]

Intuitive derivation

[edit ]

For this derivation, we will only look at geometric Brownian motion (GBM), the stochastic differential equation of which is given by: d X t = μ X d t + σ X d W t {\displaystyle \mathrm {d} X_{t}=\mu X\mathrm {d} t+\sigma XdW_{t}} {\displaystyle \mathrm {d} X_{t}=\mu X\mathrm {d} t+\sigma XdW_{t}} with real constants μ {\displaystyle \mu } {\displaystyle \mu } and σ {\displaystyle \sigma } {\displaystyle \sigma }. Using Itō's lemma we get: d ln X t = ( μ 1 2 σ 2 ) d t + σ d W t {\displaystyle \mathrm {d} \ln X_{t}=\left(\mu -{\frac {1}{2}}\sigma ^{2}\right)\mathrm {d} t+\sigma \mathrm {d} W_{t}} {\displaystyle \mathrm {d} \ln X_{t}=\left(\mu -{\frac {1}{2}}\sigma ^{2}\right)\mathrm {d} t+\sigma \mathrm {d} W_{t}}

Thus, the solution to the GBM SDE is: X t + Δ t = X t exp { t t + Δ t ( μ 1 2 σ 2 ) d t + t t + Δ t σ d W u } X t ( 1 + μ Δ t 1 2 σ 2 Δ t + σ Δ W t + 1 2 σ 2 ( Δ W t ) 2 ) = X t + a ( X t ) Δ t + b ( X t ) Δ W t + 1 2 b ( X t ) b ( X t ) ( ( Δ W t ) 2 Δ t ) {\displaystyle {\begin{aligned}X_{t+\Delta t}&=X_{t}\exp \left\{\int _{t}^{t+\Delta t}\left(\mu -{\frac {1}{2}}\sigma ^{2}\right)\mathrm {d} t+\int _{t}^{t+\Delta t}\sigma \mathrm {d} W_{u}\right\}\\&\approx X_{t}\left(1+\mu \Delta t-{\frac {1}{2}}\sigma ^{2}\Delta t+\sigma \Delta W_{t}+{\frac {1}{2}}\sigma ^{2}(\Delta W_{t})^{2}\right)\\&=X_{t}+a(X_{t})\Delta t+b(X_{t})\Delta W_{t}+{\frac {1}{2}}b(X_{t})b'(X_{t})((\Delta W_{t})^{2}-\Delta t)\end{aligned}}} {\displaystyle {\begin{aligned}X_{t+\Delta t}&=X_{t}\exp \left\{\int _{t}^{t+\Delta t}\left(\mu -{\frac {1}{2}}\sigma ^{2}\right)\mathrm {d} t+\int _{t}^{t+\Delta t}\sigma \mathrm {d} W_{u}\right\}\\&\approx X_{t}\left(1+\mu \Delta t-{\frac {1}{2}}\sigma ^{2}\Delta t+\sigma \Delta W_{t}+{\frac {1}{2}}\sigma ^{2}(\Delta W_{t})^{2}\right)\\&=X_{t}+a(X_{t})\Delta t+b(X_{t})\Delta W_{t}+{\frac {1}{2}}b(X_{t})b'(X_{t})((\Delta W_{t})^{2}-\Delta t)\end{aligned}}} where a ( x ) = μ x ,   b ( x ) = σ x {\displaystyle a(x)=\mu x,~b(x)=\sigma x} {\displaystyle a(x)=\mu x,~b(x)=\sigma x}

The numerical solution is presented in the graphic for three different trajectories.[4]

Numerical solution for the stochastic differential equation where the drift is twice the diffusion coefficient.

Computer implementation

[edit ]

The following Python code implements the Milstein method and uses it to solve the SDE describing geometric Brownian motion defined by { d Y t = μ Y d t + σ Y d W t Y 0 = Y init {\displaystyle {\begin{cases}dY_{t}=\mu Y,円{\mathrm {d} }t+\sigma Y,円{\mathrm {d} }W_{t}\\Y_{0}=Y_{\text{init}}\end{cases}}} {\displaystyle {\begin{cases}dY_{t}=\mu Y,円{\mathrm {d} }t+\sigma Y,円{\mathrm {d} }W_{t}\\Y_{0}=Y_{\text{init}}\end{cases}}}

# -*- coding: utf-8 -*-
# Milstein Method

importnumpyasnp
importmatplotlib.pyplotasplt


classModel:
"""Stochastic model constants."""
 mu = 3
 sigma = 1


defdW(dt):
"""Random sample normal distribution."""
 return np.random.normal(loc=0.0, scale=np.sqrt(dt))


defrun_simulation():
""" Return the result of one full simulation."""
 # One second and thousand grid points
 T_INIT = 0
 T_END = 1
 N = 1000 # Compute 1000 grid points
 DT = float(T_END - T_INIT) / N
 TS = np.arange(T_INIT, T_END + DT, DT)

 Y_INIT = 1

 # Vectors to fill
 ys = np.zeros(N + 1)
 ys[0] = Y_INIT
 for i in range(1, TS.size):
 t = (i - 1) * DT
 y = ys[i - 1]
 dw = dW(DT)

 # Sum up terms as in the Milstein method
 ys[i] = y + \
 Model.mu * y * DT + \
 Model.sigma * y * dw + \
 (Model.sigma**2 / 2) * y * (dw**2 - DT)

 return TS, ys


defplot_simulations(num_sims: int):
"""Plot several simulations in one image."""
 for _ in range(num_sims):
 plt.plot(*run_simulation())

 plt.xlabel("time (s)")
 plt.ylabel("y")
 plt.grid()
 plt.show()


if __name__ == "__main__":
 NUM_SIMS = 2
 plot_simulations(NUM_SIMS)

See also

[edit ]

References

[edit ]
  1. ^ Mil'shtein, G. N. (1974). "Приближенное интегрирование стохастических дифференциальных уравнений" [Approximate integration of stochastic differential equations]. Teoriya Veroyatnostei i ee Primeneniya (in Russian). 19 (3): 583–588.
  2. ^ Mil’shtein, G. N. (1975). "Approximate Integration of Stochastic Differential Equations". Theory of Probability & Its Applications. 19 (3): 557–000. doi:10.1137/1119062.
  3. ^ Mackevičius, V. (2011). Introduction to Stochastic Analysis. Wiley. ISBN 978-1-84821-311-1.
  4. ^ Picchini, Umberto. "SDE Toolbox: simulation and estimation of stochastic differential equations with Matlab".

Further reading

[edit ]
  • Kloeden, P.E., & Platen, E. (1999). Numerical Solution of Stochastic Differential Equations. Berlin: Springer. ISBN 3-540-54062-8.{{cite book}}: CS1 maint: multiple names: authors list (link)

AltStyle によって変換されたページ (->オリジナル) /