Jump to content
Wikipedia The Free Encyclopedia

Lommel function

From Wikipedia, the free encyclopedia

The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:

z 2 d 2 y d z 2 + z d y d z + ( z 2 ν 2 ) y = z μ + 1 . {\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}+(z^{2}-\nu ^{2})y=z^{\mu +1}.} {\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}+(z^{2}-\nu ^{2})y=z^{\mu +1}.}

Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),

s μ , ν ( z ) = π 2 [ Y ν ( z ) 0 z x μ J ν ( x ) d x J ν ( z ) 0 z x μ Y ν ( x ) d x ] , {\displaystyle s_{\mu ,\nu }(z)={\frac {\pi }{2}}\left[Y_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }J_{\nu }(x),円dx-J_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }Y_{\nu }(x),円dx\right],} {\displaystyle s_{\mu ,\nu }(z)={\frac {\pi }{2}}\left[Y_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }J_{\nu }(x),円dx-J_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }Y_{\nu }(x),円dx\right],}
S μ , ν ( z ) = s μ , ν ( z ) + 2 μ 1 Γ ( μ + ν + 1 2 ) Γ ( μ ν + 1 2 ) ( sin [ ( μ ν ) π 2 ] J ν ( z ) cos [ ( μ ν ) π 2 ] Y ν ( z ) ) , {\displaystyle S_{\mu ,\nu }(z)=s_{\mu ,\nu }(z)+2^{\mu -1}\Gamma \left({\frac {\mu +\nu +1}{2}}\right)\Gamma \left({\frac {\mu -\nu +1}{2}}\right)\left(\sin \left[(\mu -\nu ){\frac {\pi }{2}}\right]J_{\nu }(z)-\cos \left[(\mu -\nu ){\frac {\pi }{2}}\right]Y_{\nu }(z)\right),} {\displaystyle S_{\mu ,\nu }(z)=s_{\mu ,\nu }(z)+2^{\mu -1}\Gamma \left({\frac {\mu +\nu +1}{2}}\right)\Gamma \left({\frac {\mu -\nu +1}{2}}\right)\left(\sin \left[(\mu -\nu ){\frac {\pi }{2}}\right]J_{\nu }(z)-\cos \left[(\mu -\nu ){\frac {\pi }{2}}\right]Y_{\nu }(z)\right),}

where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.

The s function can also be written as[1]

s μ , ν ( z ) = z μ + 1 ( μ ν + 1 ) ( μ + ν + 1 ) 1 F 2 ( 1 ; μ 2 ν 2 + 3 2 , μ 2 + ν 2 + 3 2 ; z 2 4 ) , {\displaystyle s_{\mu ,\nu }(z)={\frac {z^{\mu +1}}{(\mu -\nu +1)(\mu +\nu +1)}}{}_{1}F_{2}(1;{\frac {\mu }{2}}-{\frac {\nu }{2}}+{\frac {3}{2}},{\frac {\mu }{2}}+{\frac {\nu }{2}}+{\frac {3}{2}};-{\frac {z^{2}}{4}}),} {\displaystyle s_{\mu ,\nu }(z)={\frac {z^{\mu +1}}{(\mu -\nu +1)(\mu +\nu +1)}}{}_{1}F_{2}(1;{\frac {\mu }{2}}-{\frac {\nu }{2}}+{\frac {3}{2}},{\frac {\mu }{2}}+{\frac {\nu }{2}}+{\frac {3}{2}};-{\frac {z^{2}}{4}}),}

where pFq is a generalized hypergeometric function.

See also

[edit ]

References

[edit ]
  1. ^ Watson's "Treatise on the Theory of Bessel functions" (1966), Section 10.7, Equation (10)
[edit ]

AltStyle によって変換されたページ (->オリジナル) /