Local invariant cycle theorem
In mathematics, the local invariant cycle theorem was originally a conjecture of Griffiths[1] [2] which states that, given a surjective proper map {\displaystyle p} from a Kähler manifold {\displaystyle X} to the unit disk that has maximal rank everywhere except over 0, each cohomology class on {\displaystyle p^{-1}(t),t\neq 0} is the restriction of some cohomology class on the entire {\displaystyle X} if the cohomology class is invariant under a circle action (monodromy action); in short,
- {\displaystyle \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(p^{-1}(t))^{S^{1}}}
is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the BBD decomposition.[3]
Deligne also proved the following.[4] [5] Given a proper morphism {\displaystyle X\to S} over the spectrum {\displaystyle S} of the henselization of {\displaystyle k[T]}, {\displaystyle k} an algebraically closed field, if {\displaystyle X} is essentially smooth over {\displaystyle k} and {\displaystyle X_{\overline {\eta }}} smooth over {\displaystyle {\overline {\eta }}}, then the homomorphism on {\displaystyle \mathbb {Q} }-cohomology:
- {\displaystyle \operatorname {H} ^{*}(X_{s})\to \operatorname {H} ^{*}(X_{\overline {\eta }})^{\operatorname {Gal} ({\overline {\eta }}/\eta )}}
is surjective, where {\displaystyle s,\eta } are the special and generic points and the homomorphism is the composition {\displaystyle \operatorname {H} ^{*}(X_{s})\simeq \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(X_{\eta })\to \operatorname {H} ^{*}(X_{\overline {\eta }}).}
See also
[edit ]Notes
[edit ]- ^ Clemens 1977, Introduction
- ^ Griffiths 1970, Conjecture 8.1.
- ^ Beilinson, Bernstein & Deligne 1982, Corollaire 6.2.9.
- ^ Deligne 1980, Théorème 3.6.1.
- ^ Deligne 1980, (3.6.4.)
References
[edit ]- Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre (1982). "Faisceaux pervers". Astérisque (in French). 100. Paris: Société Mathématique de France. MR 0751966.
- Clemens, C. H. (1977). "Degeneration of Kähler manifolds". Duke Mathematical Journal. 44 (2). doi:10.1215/S0012-7094-77-04410-6. S2CID 120378293.
- Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014.
- Griffiths, Phillip A. (1970). "Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems". Bulletin of the American Mathematical Society. 76 (2): 228–296. doi:10.1090/S0002-9904-1970-12444-2 .
- Morrison, David R. The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 101-119, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984. [1]
This algebraic geometry–related article is a stub. You can help Wikipedia by expanding it.