Jump to content
Wikipedia The Free Encyclopedia

Local invariant cycle theorem

From Wikipedia, the free encyclopedia
Invariant cycle theorem

In mathematics, the local invariant cycle theorem was originally a conjecture of Griffiths[1] [2] which states that, given a surjective proper map p {\displaystyle p} {\displaystyle p} from a Kähler manifold X {\displaystyle X} {\displaystyle X} to the unit disk that has maximal rank everywhere except over 0, each cohomology class on p 1 ( t ) , t 0 {\displaystyle p^{-1}(t),t\neq 0} {\displaystyle p^{-1}(t),t\neq 0} is the restriction of some cohomology class on the entire X {\displaystyle X} {\displaystyle X} if the cohomology class is invariant under a circle action (monodromy action); in short,

H ( X ) H ( p 1 ( t ) ) S 1 {\displaystyle \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(p^{-1}(t))^{S^{1}}} {\displaystyle \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(p^{-1}(t))^{S^{1}}}

is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the BBD decomposition.[3]

Deligne also proved the following.[4] [5] Given a proper morphism X S {\displaystyle X\to S} {\displaystyle X\to S} over the spectrum S {\displaystyle S} {\displaystyle S} of the henselization of k [ T ] {\displaystyle k[T]} {\displaystyle k[T]}, k {\displaystyle k} {\displaystyle k} an algebraically closed field, if X {\displaystyle X} {\displaystyle X} is essentially smooth over k {\displaystyle k} {\displaystyle k} and X η ¯ {\displaystyle X_{\overline {\eta }}} {\displaystyle X_{\overline {\eta }}} smooth over η ¯ {\displaystyle {\overline {\eta }}} {\displaystyle {\overline {\eta }}}, then the homomorphism on Q {\displaystyle \mathbb {Q} } {\displaystyle \mathbb {Q} }-cohomology:

H ( X s ) H ( X η ¯ ) Gal ( η ¯ / η ) {\displaystyle \operatorname {H} ^{*}(X_{s})\to \operatorname {H} ^{*}(X_{\overline {\eta }})^{\operatorname {Gal} ({\overline {\eta }}/\eta )}} {\displaystyle \operatorname {H} ^{*}(X_{s})\to \operatorname {H} ^{*}(X_{\overline {\eta }})^{\operatorname {Gal} ({\overline {\eta }}/\eta )}}

is surjective, where s , η {\displaystyle s,\eta } {\displaystyle s,\eta } are the special and generic points and the homomorphism is the composition H ( X s ) H ( X ) H ( X η ) H ( X η ¯ ) . {\displaystyle \operatorname {H} ^{*}(X_{s})\simeq \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(X_{\eta })\to \operatorname {H} ^{*}(X_{\overline {\eta }}).} {\displaystyle \operatorname {H} ^{*}(X_{s})\simeq \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(X_{\eta })\to \operatorname {H} ^{*}(X_{\overline {\eta }}).}

See also

[edit ]

Notes

[edit ]
  1. ^ Clemens 1977, Introduction
  2. ^ Griffiths 1970, Conjecture 8.1.
  3. ^ Beilinson, Bernstein & Deligne 1982, Corollaire 6.2.9.
  4. ^ Deligne 1980, Théorème 3.6.1.
  5. ^ Deligne 1980, (3.6.4.)

References

[edit ]


Stub icon

This algebraic geometry–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /