Legendre rational functions
In mathematics, the Legendre rational functions are a sequence of orthogonal functions on [0, ∞). They are obtained by composing the Cayley transform with Legendre polynomials.
A rational Legendre function of degree n is defined as: {\displaystyle R_{n}(x)={\frac {\sqrt {2}}{x+1}},円P_{n}\left({\frac {x-1}{x+1}}\right)} where {\displaystyle P_{n}(x)} is a Legendre polynomial. These functions are eigenfunctions of the singular Sturm–Liouville problem: {\displaystyle (x+1){\frac {d}{dx}}\left(x{\frac {d}{dx}}\left[\left(x+1\right)v(x)\right]\right)+\lambda v(x)=0} with eigenvalues {\displaystyle \lambda _{n}=n(n+1),円}
Properties
[edit ]Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves.
Recursion
[edit ]{\displaystyle R_{n+1}(x)={\frac {2n+1}{n+1}},円{\frac {x-1}{x+1}},円R_{n}(x)-{\frac {n}{n+1}},円R_{n-1}(x)\quad \mathrm {for,円n\geq 1} } and {\displaystyle 2(2n+1)R_{n}(x)=\left(x+1\right)^{2}\left({\frac {d}{dx}}R_{n+1}(x)-{\frac {d}{dx}}R_{n-1}(x)\right)+(x+1)\left(R_{n+1}(x)-R_{n-1}(x)\right)}
Limiting behavior
[edit ]It can be shown that {\displaystyle \lim _{x\to \infty }(x+1)R_{n}(x)={\sqrt {2}}} and {\displaystyle \lim _{x\to \infty }x\partial _{x}((x+1)R_{n}(x))=0}
Orthogonality
[edit ]{\displaystyle \int _{0}^{\infty }R_{m}(x),円R_{n}(x),円dx={\frac {2}{2n+1}}\delta _{nm}} where {\displaystyle \delta _{nm}} is the Kronecker delta function.
Particular values
[edit ]{\displaystyle {\begin{aligned}R_{0}(x)&={\frac {\sqrt {2}}{x+1}},1円\\R_{1}(x)&={\frac {\sqrt {2}}{x+1}},円{\frac {x-1}{x+1}}\\R_{2}(x)&={\frac {\sqrt {2}}{x+1}},円{\frac {x^{2}-4x+1}{(x+1)^{2}}}\\R_{3}(x)&={\frac {\sqrt {2}}{x+1}},円{\frac {x^{3}-9x^{2}+9x-1}{(x+1)^{3}}}\\R_{4}(x)&={\frac {\sqrt {2}}{x+1}},円{\frac {x^{4}-16x^{3}+36x^{2}-16x+1}{(x+1)^{4}}}\end{aligned}}}
References
[edit ]- Zhong-Qing, Wang; Ben-Yu, Guo (2005). "A mixed spectral method for incompressible viscous fluid flow in an infinite strip". Computational & Applied Mathematics. 24 (3). Sociedade Brasileira de Matemática Aplicada e Computacional. doi:10.1590/S0101-82052005000300002 .