Jump to content
Wikipedia The Free Encyclopedia

Kolmogorov continuity theorem

From Wikipedia, the free encyclopedia
Mathematical theorem

In mathematics, the Kolmogorov continuity theorem is a theorem that guarantees that a stochastic process that satisfies certain constraints on the moments of its increments will be continuous (or, more precisely, have a "continuous version"). It is credited to the Soviet mathematician Andrey Nikolaevich Kolmogorov.

Statement

[edit ]

Let ( S , d ) {\displaystyle (S,d)} {\displaystyle (S,d)} be some complete separable metric space, and let X : [ 0 , + ) × Ω S {\displaystyle X\colon [0,+\infty )\times \Omega \to S} {\displaystyle X\colon [0,+\infty )\times \Omega \to S} be a stochastic process. Suppose that for all times T > 0 {\displaystyle T>0} {\displaystyle T>0}, there exist positive constants α , β , K {\displaystyle \alpha ,\beta ,K} {\displaystyle \alpha ,\beta ,K} such that

E [ d ( X t , X s ) α ] K | t s | 1 + β {\displaystyle \mathbb {E} [d(X_{t},X_{s})^{\alpha }]\leq K|t-s|^{1+\beta }} {\displaystyle \mathbb {E} [d(X_{t},X_{s})^{\alpha }]\leq K|t-s|^{1+\beta }}

for all 0 s , t T {\displaystyle 0\leq s,t\leq T} {\displaystyle 0\leq s,t\leq T}. Then there exists a modification X ~ {\displaystyle {\tilde {X}}} {\displaystyle {\tilde {X}}} of X {\displaystyle X} {\displaystyle X} that is a continuous process, i.e. a process X ~ : [ 0 , + ) × Ω S {\displaystyle {\tilde {X}}\colon [0,+\infty )\times \Omega \to S} {\displaystyle {\tilde {X}}\colon [0,+\infty )\times \Omega \to S} such that

  • X ~ {\displaystyle {\tilde {X}}} {\displaystyle {\tilde {X}}} is sample-continuous;
  • for every time t 0 {\displaystyle t\geq 0} {\displaystyle t\geq 0}, P ( X t = X ~ t ) = 1. {\displaystyle \mathbb {P} (X_{t}={\tilde {X}}_{t})=1.} {\displaystyle \mathbb {P} (X_{t}={\tilde {X}}_{t})=1.}

Furthermore, the paths of X ~ {\displaystyle {\tilde {X}}} {\displaystyle {\tilde {X}}} are locally γ {\displaystyle \gamma } {\displaystyle \gamma }-Hölder-continuous for every 0 < γ < β α {\displaystyle 0<\gamma <{\tfrac {\beta }{\alpha }}} {\displaystyle 0<\gamma <{\tfrac {\beta }{\alpha }}}.

Example

[edit ]

In the case of Brownian motion on R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}}, the choice of constants α = 4 {\displaystyle \alpha =4} {\displaystyle \alpha =4}, β = 1 {\displaystyle \beta =1} {\displaystyle \beta =1}, K = n ( n + 2 ) {\displaystyle K=n(n+2)} {\displaystyle K=n(n+2)} will work in the Kolmogorov continuity theorem. Moreover, for any positive integer m {\displaystyle m} {\displaystyle m}, the constants α = 2 m {\displaystyle \alpha =2m} {\displaystyle \alpha =2m}, β = m 1 {\displaystyle \beta =m-1} {\displaystyle \beta =m-1} will work, for some positive value of K {\displaystyle K} {\displaystyle K} that depends on n {\displaystyle n} {\displaystyle n} and m {\displaystyle m} {\displaystyle m}.

See also

[edit ]

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /