Jump to content
Wikipedia The Free Encyclopedia

Jordan's totient function

From Wikipedia, the free encyclopedia
Arithmetical function

In number theory, Jordan's totient function, denoted as J k ( n ) {\displaystyle J_{k}(n)} {\displaystyle J_{k}(n)}, where k {\displaystyle k} {\displaystyle k} is a positive integer, is a function of a positive integer, n {\displaystyle n} {\displaystyle n}, that equals the number of k {\displaystyle k} {\displaystyle k}-tuples of positive integers that are less than or equal to n {\displaystyle n} {\displaystyle n} and that together with n {\displaystyle n} {\displaystyle n} form a coprime set of k + 1 {\displaystyle k+1} {\displaystyle k+1} integers.

Jordan's totient function is a generalization of Euler's totient function, which is the same as J 1 ( n ) {\displaystyle J_{1}(n)} {\displaystyle J_{1}(n)}. The function is named after Camille Jordan.

Definition

[edit ]

For each positive integer k {\displaystyle k} {\displaystyle k}, Jordan's totient function J k {\displaystyle J_{k}} {\displaystyle J_{k}} is multiplicative and may be evaluated as

J k ( n ) = n k p | n ( 1 1 p k ) {\displaystyle J_{k}(n)=n^{k}\prod _{p|n}\left(1-{\frac {1}{p^{k}}}\right),円} {\displaystyle J_{k}(n)=n^{k}\prod _{p|n}\left(1-{\frac {1}{p^{k}}}\right),円}, where p {\displaystyle p} {\displaystyle p} ranges through the prime divisors of n {\displaystyle n} {\displaystyle n}.

Properties

[edit ]
  • d | n J k ( d ) = n k . {\displaystyle \sum _{d|n}J_{k}(d)=n^{k}.,円} {\displaystyle \sum _{d|n}J_{k}(d)=n^{k}.,円}
which may be written in the language of Dirichlet convolutions as[1]
J k ( n ) 1 = n k {\displaystyle J_{k}(n)\star 1=n^{k},円} {\displaystyle J_{k}(n)\star 1=n^{k},円}
and via Möbius inversion as
J k ( n ) = μ ( n ) n k {\displaystyle J_{k}(n)=\mu (n)\star n^{k}} {\displaystyle J_{k}(n)=\mu (n)\star n^{k}}.
Since the Dirichlet generating function of μ {\displaystyle \mu } {\displaystyle \mu } is 1 / ζ ( s ) {\displaystyle 1/\zeta (s)} {\displaystyle 1/\zeta (s)} and the Dirichlet generating function of n k {\displaystyle n^{k}} {\displaystyle n^{k}} is ζ ( s k ) {\displaystyle \zeta (s-k)} {\displaystyle \zeta (s-k)}, the series for J k {\displaystyle J_{k}} {\displaystyle J_{k}} becomes
n 1 J k ( n ) n s = ζ ( s k ) ζ ( s ) {\displaystyle \sum _{n\geq 1}{\frac {J_{k}(n)}{n^{s}}}={\frac {\zeta (s-k)}{\zeta (s)}}} {\displaystyle \sum _{n\geq 1}{\frac {J_{k}(n)}{n^{s}}}={\frac {\zeta (s-k)}{\zeta (s)}}}.
  • An average order of J k ( n ) {\displaystyle J_{k}(n)} {\displaystyle J_{k}(n)} is
J k ( n ) n k ζ ( k + 1 ) {\displaystyle J_{k}(n)\sim {\frac {n^{k}}{\zeta (k+1)}}} {\displaystyle J_{k}(n)\sim {\frac {n^{k}}{\zeta (k+1)}}}.
ψ ( n ) = J 2 ( n ) J 1 ( n ) {\displaystyle \psi (n)={\frac {J_{2}(n)}{J_{1}(n)}}} {\displaystyle \psi (n)={\frac {J_{2}(n)}{J_{1}(n)}}},
and by inspection of the definition (recognizing that each factor in the product over the primes is a cyclotomic polynomial of p k {\displaystyle p^{-k}} {\displaystyle p^{-k}}), the arithmetic functions defined by J k ( n ) J 1 ( n ) {\displaystyle {\frac {J_{k}(n)}{J_{1}(n)}}} {\displaystyle {\frac {J_{k}(n)}{J_{1}(n)}}} or J 2 k ( n ) J k ( n ) {\displaystyle {\frac {J_{2k}(n)}{J_{k}(n)}}} {\displaystyle {\frac {J_{2k}(n)}{J_{k}(n)}}} can also be shown to be integer-valued multiplicative functions.
  • δ n δ s J r ( δ ) J s ( n δ ) = J r + s ( n ) {\displaystyle \sum _{\delta \mid n}\delta ^{s}J_{r}(\delta )J_{s}\left({\frac {n}{\delta }}\right)=J_{r+s}(n)} {\displaystyle \sum _{\delta \mid n}\delta ^{s}J_{r}(\delta )J_{s}\left({\frac {n}{\delta }}\right)=J_{r+s}(n)}.[2]

Order of matrix groups

[edit ]
  • The general linear group of matrices of order m {\displaystyle m} {\displaystyle m} over Z / n {\displaystyle \mathbf {Z} /n} {\displaystyle \mathbf {Z} /n} has order[3]
| GL ( m , Z / n ) | = n m ( m 1 ) 2 k = 1 m J k ( n ) . {\displaystyle |\operatorname {GL} (m,\mathbf {Z} /n)|=n^{\frac {m(m-1)}{2}}\prod _{k=1}^{m}J_{k}(n).} {\displaystyle |\operatorname {GL} (m,\mathbf {Z} /n)|=n^{\frac {m(m-1)}{2}}\prod _{k=1}^{m}J_{k}(n).}
  • The special linear group of matrices of order m {\displaystyle m} {\displaystyle m} over Z / n {\displaystyle \mathbf {Z} /n} {\displaystyle \mathbf {Z} /n} has order
| SL ( m , Z / n ) | = n m ( m 1 ) 2 k = 2 m J k ( n ) . {\displaystyle |\operatorname {SL} (m,\mathbf {Z} /n)|=n^{\frac {m(m-1)}{2}}\prod _{k=2}^{m}J_{k}(n).} {\displaystyle |\operatorname {SL} (m,\mathbf {Z} /n)|=n^{\frac {m(m-1)}{2}}\prod _{k=2}^{m}J_{k}(n).}
  • The symplectic group of matrices of order m {\displaystyle m} {\displaystyle m} over Z / n {\displaystyle \mathbf {Z} /n} {\displaystyle \mathbf {Z} /n} has order
| Sp ( 2 m , Z / n ) | = n m 2 k = 1 m J 2 k ( n ) . {\displaystyle |\operatorname {Sp} (2m,\mathbf {Z} /n)|=n^{m^{2}}\prod _{k=1}^{m}J_{2k}(n).} {\displaystyle |\operatorname {Sp} (2m,\mathbf {Z} /n)|=n^{m^{2}}\prod _{k=1}^{m}J_{2k}(n).}

The first two formulas were discovered by Jordan.

Examples

[edit ]

Notes

[edit ]
  1. ^ Sándor & Crstici (2004) p.106
  2. ^ Holden et al in external links. The formula is Gegenbauer's.
  3. ^ All of these formulas are from Andrica and Piticari in #External links.

References

[edit ]
[edit ]

AltStyle によって変換されたページ (->オリジナル) /