Jordan's totient function
In number theory, Jordan's totient function, denoted as {\displaystyle J_{k}(n)}, where {\displaystyle k} is a positive integer, is a function of a positive integer, {\displaystyle n}, that equals the number of {\displaystyle k}-tuples of positive integers that are less than or equal to {\displaystyle n} and that together with {\displaystyle n} form a coprime set of {\displaystyle k+1} integers.
Jordan's totient function is a generalization of Euler's totient function, which is the same as {\displaystyle J_{1}(n)}. The function is named after Camille Jordan.
Definition
[edit ]For each positive integer {\displaystyle k}, Jordan's totient function {\displaystyle J_{k}} is multiplicative and may be evaluated as
- {\displaystyle J_{k}(n)=n^{k}\prod _{p|n}\left(1-{\frac {1}{p^{k}}}\right),円}, where {\displaystyle p} ranges through the prime divisors of {\displaystyle n}.
Properties
[edit ]- {\displaystyle \sum _{d|n}J_{k}(d)=n^{k}.,円}
- which may be written in the language of Dirichlet convolutions as[1]
- {\displaystyle J_{k}(n)\star 1=n^{k},円}
- and via Möbius inversion as
- {\displaystyle J_{k}(n)=\mu (n)\star n^{k}}.
- Since the Dirichlet generating function of {\displaystyle \mu } is {\displaystyle 1/\zeta (s)} and the Dirichlet generating function of {\displaystyle n^{k}} is {\displaystyle \zeta (s-k)}, the series for {\displaystyle J_{k}} becomes
- {\displaystyle \sum _{n\geq 1}{\frac {J_{k}(n)}{n^{s}}}={\frac {\zeta (s-k)}{\zeta (s)}}}.
- An average order of {\displaystyle J_{k}(n)} is
- {\displaystyle J_{k}(n)\sim {\frac {n^{k}}{\zeta (k+1)}}}.
- The Dedekind psi function is
- {\displaystyle \psi (n)={\frac {J_{2}(n)}{J_{1}(n)}}},
- and by inspection of the definition (recognizing that each factor in the product over the primes is a cyclotomic polynomial of {\displaystyle p^{-k}}), the arithmetic functions defined by {\displaystyle {\frac {J_{k}(n)}{J_{1}(n)}}} or {\displaystyle {\frac {J_{2k}(n)}{J_{k}(n)}}} can also be shown to be integer-valued multiplicative functions.
- {\displaystyle \sum _{\delta \mid n}\delta ^{s}J_{r}(\delta )J_{s}\left({\frac {n}{\delta }}\right)=J_{r+s}(n)}.[2]
Order of matrix groups
[edit ]- The general linear group of matrices of order {\displaystyle m} over {\displaystyle \mathbf {Z} /n} has order[3]
- {\displaystyle |\operatorname {GL} (m,\mathbf {Z} /n)|=n^{\frac {m(m-1)}{2}}\prod _{k=1}^{m}J_{k}(n).}
- The special linear group of matrices of order {\displaystyle m} over {\displaystyle \mathbf {Z} /n} has order
- {\displaystyle |\operatorname {SL} (m,\mathbf {Z} /n)|=n^{\frac {m(m-1)}{2}}\prod _{k=2}^{m}J_{k}(n).}
- The symplectic group of matrices of order {\displaystyle m} over {\displaystyle \mathbf {Z} /n} has order
- {\displaystyle |\operatorname {Sp} (2m,\mathbf {Z} /n)|=n^{m^{2}}\prod _{k=1}^{m}J_{2k}(n).}
The first two formulas were discovered by Jordan.
Examples
[edit ]- Explicit lists in the OEIS are J2 in OEIS: A007434 , J3 in OEIS: A059376 , J4 in OEIS: A059377 , J5 in OEIS: A059378 , J6 up to J10 in OEIS: A069091 up to OEIS: A069095 .
- Multiplicative functions defined by ratios are J2(n)/J1(n) in OEIS: A001615 , J3(n)/J1(n) in OEIS: A160889 , J4(n)/J1(n) in OEIS: A160891 , J5(n)/J1(n) in OEIS: A160893 , J6(n)/J1(n) in OEIS: A160895 , J7(n)/J1(n) in OEIS: A160897 , J8(n)/J1(n) in OEIS: A160908 , J9(n)/J1(n) in OEIS: A160953 , J10(n)/J1(n) in OEIS: A160957 , J11(n)/J1(n) in OEIS: A160960 .
- Examples of the ratios J2k(n)/Jk(n) are J4(n)/J2(n) in OEIS: A065958 , J6(n)/J3(n) in OEIS: A065959 , and J8(n)/J4(n) in OEIS: A065960 .
Notes
[edit ]- ^ Sándor & Crstici (2004) p.106
- ^ Holden et al in external links. The formula is Gegenbauer's.
- ^ All of these formulas are from Andrica and Piticari in #External links.
References
[edit ]- L. E. Dickson (1971) [1919]. History of the Theory of Numbers, Vol. I . Chelsea Publishing. p. 147. ISBN 0-8284-0086-5. JFM 47.0100.04.
- M. Ram Murty (2001). Problems in Analytic Number Theory. Graduate Texts in Mathematics. Vol. 206. Springer-Verlag. p. 11. ISBN 0-387-95143-1. Zbl 0971.11001.
- Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. pp. 32–36. ISBN 1-4020-2546-7. Zbl 1079.11001.
External links
[edit ]- Andrica, Dorin; Piticari, Mihai (2004). "On some extensions of Jordan's arithmetic functions". Acta Universitatis Apulensis. 7: 13–22. MR 2157944.
- Holden, Matthew; Orrison, Michael; Vrable, Michael. "Yet Another Generalization of Euler's Totient Function" (PDF). Archived from the original (PDF) on 2016年03月05日. Retrieved 2011年12月21日.