Jump to content
Wikipedia The Free Encyclopedia

Initial value theorem

From Wikipedia, the free encyclopedia
Mathematical theorem using Laplace transform

In mathematical analysis, the initial value theorem is a theorem used to relate frequency domain expressions to the time domain behavior as time approaches zero.[1]

Let

F ( s ) = 0 f ( t ) e s t d t {\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st},円dt} {\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st},円dt}

be the (one-sided) Laplace transform of ƒ(t). If f {\displaystyle f} {\displaystyle f} is bounded on ( 0 , ) {\displaystyle (0,\infty )} {\displaystyle (0,\infty )} (or if just f ( t ) = O ( e c t ) {\displaystyle f(t)=O(e^{ct})} {\displaystyle f(t)=O(e^{ct})}) and lim t 0 + f ( t ) {\displaystyle \lim _{t\to 0^{+}}f(t)} {\displaystyle \lim _{t\to 0^{+}}f(t)} exists then the initial value theorem says[2]

lim t 0 f ( t ) = lim s s F ( s ) . {\displaystyle \lim _{t,円\to ,0円}f(t)=\lim _{s\to \infty }{sF(s)}.} {\displaystyle \lim _{t,円\to ,0円}f(t)=\lim _{s\to \infty }{sF(s)}.}

Proofs

[edit ]

Proof using dominated convergence theorem and assuming that function is bounded

[edit ]

Suppose first that f {\displaystyle f} {\displaystyle f} is bounded, i.e. lim t 0 + f ( t ) = α {\displaystyle \lim _{t\to 0^{+}}f(t)=\alpha } {\displaystyle \lim _{t\to 0^{+}}f(t)=\alpha }. A change of variable in the integral 0 f ( t ) e s t d t {\displaystyle \int _{0}^{\infty }f(t)e^{-st},円dt} {\displaystyle \int _{0}^{\infty }f(t)e^{-st},円dt} shows that

s F ( s ) = 0 f ( t s ) e t d t {\displaystyle sF(s)=\int _{0}^{\infty }f\left({\frac {t}{s}}\right)e^{-t},円dt} {\displaystyle sF(s)=\int _{0}^{\infty }f\left({\frac {t}{s}}\right)e^{-t},円dt}.

Since f {\displaystyle f} {\displaystyle f} is bounded, the Dominated Convergence Theorem implies that

lim s s F ( s ) = 0 α e t d t = α . {\displaystyle \lim _{s\to \infty }sF(s)=\int _{0}^{\infty }\alpha e^{-t},円dt=\alpha .} {\displaystyle \lim _{s\to \infty }sF(s)=\int _{0}^{\infty }\alpha e^{-t},円dt=\alpha .}

Proof using elementary calculus and assuming that function is bounded

[edit ]

Of course we don't really need DCT here, one can give a very simple proof using only elementary calculus:

Start by choosing A {\displaystyle A} {\displaystyle A} so that A e t d t < ϵ {\displaystyle \int _{A}^{\infty }e^{-t},円dt<\epsilon } {\displaystyle \int _{A}^{\infty }e^{-t},円dt<\epsilon }, and then note that lim s f ( t s ) = α {\displaystyle \lim _{s\to \infty }f\left({\frac {t}{s}}\right)=\alpha } {\displaystyle \lim _{s\to \infty }f\left({\frac {t}{s}}\right)=\alpha } uniformly for t ( 0 , A ] {\displaystyle t\in (0,A]} {\displaystyle t\in (0,A]}.

Generalizing to non-bounded functions that have exponential order

[edit ]

The theorem assuming just that f ( t ) = O ( e c t ) {\displaystyle f(t)=O(e^{ct})} {\displaystyle f(t)=O(e^{ct})} follows from the theorem for bounded f {\displaystyle f} {\displaystyle f}:

Define g ( t ) = e c t f ( t ) {\displaystyle g(t)=e^{-ct}f(t)} {\displaystyle g(t)=e^{-ct}f(t)}. Then g {\displaystyle g} {\displaystyle g} is bounded, so we've shown that g ( 0 + ) = lim s s G ( s ) {\displaystyle g(0^{+})=\lim _{s\to \infty }sG(s)} {\displaystyle g(0^{+})=\lim _{s\to \infty }sG(s)}. But f ( 0 + ) = g ( 0 + ) {\displaystyle f(0^{+})=g(0^{+})} {\displaystyle f(0^{+})=g(0^{+})} and G ( s ) = F ( s + c ) {\displaystyle G(s)=F(s+c)} {\displaystyle G(s)=F(s+c)}, so

lim s s F ( s ) = lim s ( s c ) F ( s ) = lim s s F ( s + c ) = lim s s G ( s ) , {\displaystyle \lim _{s\to \infty }sF(s)=\lim _{s\to \infty }(s-c)F(s)=\lim _{s\to \infty }sF(s+c)=\lim _{s\to \infty }sG(s),} {\displaystyle \lim _{s\to \infty }sF(s)=\lim _{s\to \infty }(s-c)F(s)=\lim _{s\to \infty }sF(s+c)=\lim _{s\to \infty }sG(s),}

since lim s F ( s ) = 0 {\displaystyle \lim _{s\to \infty }F(s)=0} {\displaystyle \lim _{s\to \infty }F(s)=0}.

See also

[edit ]

Notes

[edit ]
  1. ^ Fourier and Laplace transforms. R. J. Beerends. Cambridge: Cambridge University Press. 2003. ISBN 978-0-511-67510-2. OCLC 593333940.{{cite book}}: CS1 maint: others (link)
  2. ^ Robert H. Cannon, Dynamics of Physical Systems, Courier Dover Publications, 2003, page 567.


Stub icon

This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /