Jump to content
Wikipedia The Free Encyclopedia

Getis–Ord statistics

From Wikipedia, the free encyclopedia
Spatial autocorrelation statistic

Getis–Ord statistics, also known as Gi*, are used in spatial analysis to measure the local and global spatial autocorrelation. Developed by statisticians Arthur Getis and J. Keith Ord they are commonly used for Hot Spot Analysis[1] [2] to identify where features with high or low values are spatially clustered in a statistically significant way. Getis-Ord statistics are available in a number of software libraries such as CrimeStat, GeoDa, ArcGIS, PySAL[3] and R.[4] [5]

Local statistics

[edit ]
Hot spot map showing hot and cold spots in the 2020 USA Contiguous Unemployment Rate, calculated using Getis Ord Gi*

There are two different versions of the statistic, depending on whether the data point at the target location i {\displaystyle i} {\displaystyle i} is included or not[6]

G i = j i w i j x j j i x j {\displaystyle G_{i}={\frac {\sum _{j\neq i}w_{ij}x_{j}}{\sum _{j\neq i}x_{j}}}} {\displaystyle G_{i}={\frac {\sum _{j\neq i}w_{ij}x_{j}}{\sum _{j\neq i}x_{j}}}}
G i = j w i j x j j x j {\displaystyle G_{i}^{*}={\frac {\sum _{j}w_{ij}x_{j}}{\sum _{j}x_{j}}}} {\displaystyle G_{i}^{*}={\frac {\sum _{j}w_{ij}x_{j}}{\sum _{j}x_{j}}}}

Here x i {\displaystyle x_{i}} {\displaystyle x_{i}} is the value observed at the i t h {\displaystyle i^{th}} {\displaystyle i^{th}} spatial site and w i j {\displaystyle w_{ij}} {\displaystyle w_{ij}} is the spatial weight matrix which constrains which sites are connected to one another. For G i {\displaystyle G_{i}^{*}} {\displaystyle G_{i}^{*}} the denominator is constant across all observations.

A value larger (or smaller) than the mean suggests a hot (or cold) spot corresponding to a high-high (or low-low) cluster. Statistical significance can be estimated using analytical approximations as in the original work[7] [8] however in practice permutation testing is used to obtain more reliable estimates of significance for statistical inference.[6]

Global statistics

[edit ]

The Getis-Ord statistics of overall spatial association are[7] [9]

G = i j , i j w i j x i x j i j , i j x i x j {\displaystyle G={\frac {\sum _{ij,i\neq j}w_{ij}x_{i}x_{j}}{\sum _{ij,i\neq j}x_{i}x_{j}}}} {\displaystyle G={\frac {\sum _{ij,i\neq j}w_{ij}x_{i}x_{j}}{\sum _{ij,i\neq j}x_{i}x_{j}}}}
G = i j w i j x i x j i j x i x j {\displaystyle G^{*}={\frac {\sum _{ij}w_{ij}x_{i}x_{j}}{\sum _{ij}x_{i}x_{j}}}} {\displaystyle G^{*}={\frac {\sum _{ij}w_{ij}x_{i}x_{j}}{\sum _{ij}x_{i}x_{j}}}}

The local and global G {\displaystyle G^{*}} {\displaystyle G^{*}} statistics are related through the weighted average

i x i G i i x i = i j x i w i j x j i x i j x j = G {\displaystyle {\frac {\sum _{i}x_{i}G_{i}^{*}}{\sum _{i}x_{i}}}={\frac {\sum _{ij}x_{i}w_{ij}x_{j}}{\sum _{i}x_{i}\sum _{j}x_{j}}}=G^{*}} {\displaystyle {\frac {\sum _{i}x_{i}G_{i}^{*}}{\sum _{i}x_{i}}}={\frac {\sum _{ij}x_{i}w_{ij}x_{j}}{\sum _{i}x_{i}\sum _{j}x_{j}}}=G^{*}}

The relationship of the G {\displaystyle G} {\displaystyle G} and G i {\displaystyle G_{i}} {\displaystyle G_{i}} statistics is more complicated due to the dependence of the denominator of G i {\displaystyle G_{i}} {\displaystyle G_{i}} on i {\displaystyle i} {\displaystyle i}.

Relation to Moran's I

[edit ]

Moran's I is another commonly used measure of spatial association defined by

I = N W i j w i j ( x i x ¯ ) ( x j x ¯ ) i ( x i x ¯ ) 2 {\displaystyle I={\frac {N}{W}}{\frac {\sum _{ij}w_{ij}(x_{i}-{\bar {x}})(x_{j}-{\bar {x}})}{\sum _{i}(x_{i}-{\bar {x}})^{2}}}} {\displaystyle I={\frac {N}{W}}{\frac {\sum _{ij}w_{ij}(x_{i}-{\bar {x}})(x_{j}-{\bar {x}})}{\sum _{i}(x_{i}-{\bar {x}})^{2}}}}

where N {\displaystyle N} {\displaystyle N} is the number of spatial sites and W = i j w i j {\displaystyle W=\sum _{ij}w_{ij}} {\displaystyle W=\sum _{ij}w_{ij}} is the sum of the entries in the spatial weight matrix. Getis and Ord show[7] that

I = ( K 1 / K 2 ) G K 2 x ¯ i ( w i + w i ) x i + K 2 x ¯ 2 W {\displaystyle I=(K_{1}/K_{2})G-K_{2}{\bar {x}}\sum _{i}(w_{i\cdot }+w_{\cdot i})x_{i}+K_{2}{\bar {x}}^{2}W} {\displaystyle I=(K_{1}/K_{2})G-K_{2}{\bar {x}}\sum _{i}(w_{i\cdot }+w_{\cdot i})x_{i}+K_{2}{\bar {x}}^{2}W}

Where w i = j w i j {\displaystyle w_{i\cdot }=\sum _{j}w_{ij}} {\displaystyle w_{i\cdot }=\sum _{j}w_{ij}}, w i = j w j i {\displaystyle w_{\cdot i}=\sum _{j}w_{ji}} {\displaystyle w_{\cdot i}=\sum _{j}w_{ji}}, K 1 = ( i j , i j x i x j ) 1 {\displaystyle K_{1}=\left(\sum _{ij,i\neq j}x_{i}x_{j}\right)^{-1}} {\displaystyle K_{1}=\left(\sum _{ij,i\neq j}x_{i}x_{j}\right)^{-1}} and K 2 = W N ( i ( x i x ¯ ) 2 ) 1 {\displaystyle K_{2}={\frac {W}{N}}\left(\sum _{i}(x_{i}-{\bar {x}})^{2}\right)^{-1}} {\displaystyle K_{2}={\frac {W}{N}}\left(\sum _{i}(x_{i}-{\bar {x}})^{2}\right)^{-1}}. They are equal if w i j = w {\displaystyle w_{ij}=w} {\displaystyle w_{ij}=w} is constant, but not in general.

Ord and Getis[8] also show that Moran's I can be written in terms of G i {\displaystyle G_{i}^{*}} {\displaystyle G_{i}^{*}}

I = 1 W ( i z i V i G i N ) {\displaystyle I={\frac {1}{W}}\left(\sum _{i}z_{i}V_{i}G_{i}^{*}-N\right)} {\displaystyle I={\frac {1}{W}}\left(\sum _{i}z_{i}V_{i}G_{i}^{*}-N\right)}

where z i = ( x i x ¯ ) / s {\displaystyle z_{i}=(x_{i}-{\bar {x}})/s} {\displaystyle z_{i}=(x_{i}-{\bar {x}})/s}, s {\displaystyle s} {\displaystyle s} is the standard deviation of x {\displaystyle x} {\displaystyle x} and

V i 2 = 1 N 1 j ( w i j 1 N k w i k ) 2 {\displaystyle V_{i}^{2}={\frac {1}{N-1}}\sum _{j}\left(w_{ij}-{\frac {1}{N}}\sum _{k}w_{ik}\right)^{2}} {\displaystyle V_{i}^{2}={\frac {1}{N-1}}\sum _{j}\left(w_{ij}-{\frac {1}{N}}\sum _{k}w_{ik}\right)^{2}}

is an estimate of the variance of w i j {\displaystyle w_{ij}} {\displaystyle w_{ij}}.

See also

[edit ]

References

[edit ]
  1. ^ "RPubs - R Tutorial: Hotspot Analysis Using Getis Ord Gi".
  2. ^ "Hot Spot Analysis (Getis-Ord Gi*) (Spatial Statistics)—ArcGIS Pro | Documentation".
  3. ^ https://pysal.org/
  4. ^ "R-spatial/Spdep". GitHub .
  5. ^ Bivand, R.S.; Wong, D.W. (2018). "Comparing implementations of global and local indicators of spatial association". Test. 27 (3): 716–748. doi:10.1007/s11749-018-0599-x. hdl:11250/2565494 .
  6. ^ a b "Local Spatial Autocorrelation (2)".
  7. ^ a b c Getis, A.; Ord, J.K. (1992). "The analysis of spatial association by use of distance statistics". Geographical Analysis . 24 (3): 189–206. doi:10.1111/j.1538-4632.1992.tb00261.x.
  8. ^ a b Ord, J.K.; Getis, A. (1995). "Local spatial autocorrelation statistics: distributional issues and an application". Geographical Analysis . 27 (4): 286–306. doi:10.1111/j.1538-4632.1995.tb00912.x.
  9. ^ "How High/Low Clustering (Getis-Ord General G) works—ArcGIS Pro | Documentation".

AltStyle によって変換されたページ (->オリジナル) /