Jump to content
Wikipedia The Free Encyclopedia

Generalized iterative scaling

From Wikipedia, the free encyclopedia

In statistics, generalized iterative scaling (GIS) and improved iterative scaling (IIS) are two early algorithms used to fit log-linear models,[1] notably multinomial logistic regression (MaxEnt) classifiers and extensions of it such as MaxEnt Markov models [2] and conditional random fields. These algorithms have been largely surpassed by gradient-based methods such as L-BFGS [3] and coordinate descent algorithms.[4]

See also

[edit ]

References

[edit ]
  1. ^ Darroch, J.N.; Ratcliff, D. (1972). "Generalized iterative scaling for log-linear models". The Annals of Mathematical Statistics. 43 (5): 1470–1480. doi:10.1214/aoms/1177692379 .
  2. ^ McCallum, Andrew; Freitag, Dayne; Pereira, Fernando (2000). "Maximum Entropy Markov Models for Information Extraction and Segmentation" (PDF). Proc. ICML 2000. pp. 591–598.
  3. ^ Malouf, Robert (2002). A comparison of algorithms for maximum entropy parameter estimation (PDF). Sixth Conf. on Natural Language Learning (CoNLL). pp. 49–55. Archived from the original (PDF) on 2013年11月01日.
  4. ^ Yu, Hsiang-Fu; Huang, Fang-Lan; Lin, Chih-Jen (2011). "Dual coordinate descent methods for logistic regression and maximum entropy models" (PDF). Machine Learning. 85 (1–2): 41–75. doi:10.1007/s10994-010-5221-8 .
Functions
Gradients
Convergence
Quasi–Newton
Other methods
Hessians
General
Differentiable
Convex
minimization
Linear and
quadratic
Interior point
Basis- exchange
Paradigms
Graph
algorithms
Minimum
spanning tree
Shortest path
Network flows


Stub icon

This statistics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /