Generalised logistic function
The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.
Definition
[edit ]Richards's curve has the following form:
- {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-Bt})^{1/\nu }}}
where {\displaystyle Y} = weight, height, size etc., and {\displaystyle t} = time. It has six parameters:
- {\displaystyle A}: the left horizontal asymptote;
- {\displaystyle K}: the right horizontal asymptote when {\displaystyle C=1}. If {\displaystyle A=0} and {\displaystyle C=1} then {\displaystyle K} is called the carrying capacity;
- {\displaystyle B}: the growth rate;
- {\displaystyle \nu >0} : affects near which asymptote maximum growth occurs.
- {\displaystyle Q}: is related to the value {\displaystyle Y(0)}
- {\displaystyle C}: typically takes a value of 1. Otherwise, the upper asymptote is {\displaystyle A+{K-A \over C^{,1円/\nu }}}
The equation can also be written:
- {\displaystyle Y(t)=A+{K-A \over (C+e^{-B(t-M)})^{1/\nu }}}
where {\displaystyle M} can be thought of as a starting time, at which {\displaystyle Y(M)=A+{K-A \over (C+1)^{1/\nu }}}. Including both {\displaystyle Q} and {\displaystyle M} can be convenient:
- {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-B(t-M)})^{1/\nu }}}
this representation simplifies the setting of both a starting time and the value of {\displaystyle Y} at that time.
The logistic function, with maximum growth rate at time {\displaystyle M}, is the case where {\displaystyle Q=\nu =1}.
Generalised logistic differential equation
[edit ]A particular case of the generalised logistic function is:
- {\displaystyle Y(t)={K \over (1+Qe^{-\alpha \nu (t-t_{0})})^{1/\nu }}}
which is the solution of the Richards's differential equation (RDE):
- {\displaystyle Y^{\prime }(t)=\alpha \left(1-\left({\frac {Y}{K}}\right)^{\nu }\right)Y}
with initial condition
- {\displaystyle Y(t_{0})=Y_{0}}
where
- {\displaystyle Q=-1+\left({\frac {K}{Y_{0}}}\right)^{\nu }}
provided that {\displaystyle \nu >0} and {\displaystyle \alpha >0}
The classical logistic differential equation is a particular case of the above equation, with {\displaystyle \nu =1}, whereas the Gompertz curve can be recovered in the limit {\displaystyle \nu \rightarrow 0^{+}} provided that:
- {\displaystyle \alpha =O\left({\frac {1}{\nu }}\right)}
In fact, for small {\displaystyle \nu } it is
- {\displaystyle Y^{\prime }(t)=Yr{\frac {1-\exp \left(\nu \ln \left({\frac {Y}{K}}\right)\right)}{\nu }}\approx rY\ln \left({\frac {Y}{K}}\right)}
The RDE models many growth phenomena, arising in fields such as oncology and epidemiology.
Gradient of generalized logistic function
[edit ]When estimating parameters from data, it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point {\displaystyle t} (see[1] ). For the case where {\displaystyle C=1},
- {\displaystyle {\begin{aligned}\\{\frac {\partial Y}{\partial A}}&=1-(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial K}}&=(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial B}}&={\frac {(K-A)(t-M)Qe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial \nu }}&={\frac {(K-A)\ln(1+Qe^{-B(t-M)})}{\nu ^{2}(1+Qe^{-B(t-M)})^{\frac {1}{\nu }}}}\\\\{\frac {\partial Y}{\partial Q}}&=-{\frac {(K-A)e^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial M}}&=-{\frac {(K-A)QBe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\end{aligned}}}
Special cases
[edit ]The following functions are specific cases of Richards's curves:
- Logistic function
- Gompertz curve
- Von Bertalanffy function
- Monomolecular curve
Footnotes
[edit ]- ^ Fekedulegn, Desta; Mairitin P. Mac Siurtain; Jim J. Colbert (1999). "Parameter Estimation of Nonlinear Growth Models in Forestry" (PDF). Silva Fennica. 33 (4): 327–336. doi:10.14214/sf.653. Archived from the original (PDF) on 2011年09月29日. Retrieved 2011年05月31日.
References
[edit ]- Richards, F. J. (1959). "A Flexible Growth Function for Empirical Use". Journal of Experimental Botany . 10 (2): 290–300. doi:10.1093/jxb/10.2.290.
- Pella, J. S.; Tomlinson, P. K. (1969). "A Generalised Stock-Production Model". Bull. Inter-Am. Trop. Tuna Comm. 13: 421–496.
- Lei, Y. C.; Zhang, S. Y. (2004). "Features and Partial Derivatives of Bertalanffy–Richards Growth Model in Forestry". Nonlinear Analysis: Modelling and Control. 9 (1): 65–73. doi:10.15388/NA.2004年9月1日.15171 .