Jump to content
Wikipedia The Free Encyclopedia

Folded spectrum method

From Wikipedia, the free encyclopedia
Mathematical method for solving large eigenvalue problems

In mathematics, the folded spectrum method (FSM) is an iterative method for solving large eigenvalue problems. Here you always find a vector with an eigenvalue close to a search-value ε {\displaystyle \varepsilon } {\displaystyle \varepsilon }. This means you can get a vector Ψ {\displaystyle \Psi } {\displaystyle \Psi } in the middle of the spectrum without solving the matrix.

Ψ i + 1 = Ψ i α ( H ε 1 ) 2 Ψ i {\displaystyle \Psi _{i+1}=\Psi _{i}-\alpha (H-\varepsilon \mathbf {1} )^{2}\Psi _{i}} {\displaystyle \Psi _{i+1}=\Psi _{i}-\alpha (H-\varepsilon \mathbf {1} )^{2}\Psi _{i}}, with 0 < α < 1 {\displaystyle 0<\alpha ^{,円}<1} {\displaystyle 0<\alpha ^{,円}<1} and 1 {\displaystyle \mathbf {1} } {\displaystyle \mathbf {1} } the Identity matrix.

In contrast to the Conjugate gradient method, here the gradient calculates by twice multiplying matrix H : G H G H 2 . {\displaystyle H:\;G\sim H\rightarrow G\sim H^{2}.} {\displaystyle H:\;G\sim H\rightarrow G\sim H^{2}.}

Literature

[edit ]


Stub icon

This linear algebra-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /