Exponential hierarchy
In computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes that is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, "exponential" is used in two different meanings (linear exponential bounds {\displaystyle 2^{cn}} for a constant c, and full exponential bounds {\displaystyle 2^{n^{c}}}), leading to two versions of the exponential hierarchy.[1] [2] This hierarchy is sometimes also referred to as the weak exponential hierarchy, to differentiate it from the strong exponential hierarchy.[2] [3]
EH
[edit ]The complexity class EH is the union of the classes {\displaystyle \Sigma _{k}^{\mathsf {E}}} for all k, where {\displaystyle \Sigma _{k}^{\mathsf {E}}={\mathsf {NE}}^{\Sigma _{k-1}^{\mathsf {P}}}} (i.e., languages computable in nondeterministic time {\displaystyle 2^{cn}} for some constant c with a {\displaystyle \Sigma _{k-1}^{\mathsf {P}}} oracle) and {\displaystyle \Sigma _{0}^{\mathsf {E}}={\mathsf {E}}}. One also defines
- {\displaystyle \Pi _{k}^{\mathsf {E}}={\mathsf {coNE}}^{\Sigma _{k-1}^{\mathsf {P}}}} and {\displaystyle \Delta _{k}^{\mathsf {E}}={\mathsf {E}}^{\Sigma _{k-1}^{\mathsf {P}}}.}
An equivalent definition is that a language L is in {\displaystyle \Sigma _{k}^{\mathsf {E}}} if and only if it can be written in the form
- {\displaystyle x\in L\iff \exists y_{1}\forall y_{2}\dots Qy_{k}R(x,y_{1},\ldots ,y_{k}),}
where {\displaystyle R(x,y_{1},\ldots ,y_{n})} is a predicate computable in time {\displaystyle 2^{c|x|}} (which implicitly bounds the length of yi). Also equivalently, EH is the class of languages computable on an alternating Turing machine in time {\displaystyle 2^{cn}} for some c with constantly many alternations.
EXPH
[edit ]EXPH is the union of the classes {\displaystyle \Sigma _{k}^{\mathsf {EXP}}}, where {\displaystyle \Sigma _{k}^{\mathsf {EXP}}={\mathsf {NEXP}}^{\Sigma _{k-1}^{\mathsf {P}}}} (languages computable in nondeterministic time {\displaystyle 2^{n^{c}}} for some constant c with a {\displaystyle \Sigma _{k-1}^{\mathsf {P}}} oracle), {\displaystyle \Sigma _{0}^{\mathsf {EXP}}={\mathsf {EXP}}}, and again:
- {\displaystyle \Pi _{k}^{\mathsf {EXP}}={\mathsf {coNEXP}}^{\Sigma _{k-1}^{\mathsf {P}}},\Delta _{k}^{\mathsf {EXP}}={\mathsf {EXP}}^{\Sigma _{k-1}^{\mathsf {P}}}.}
A language L is in {\displaystyle \Sigma _{k}^{\mathsf {EXP}}} if and only if it can be written as
- {\displaystyle x\in L\iff \exists y_{1}\forall y_{2}\dots Qy_{k}R(x,y_{1},\ldots ,y_{k}),}
where {\displaystyle R(x,y_{1},\ldots ,y_{k})} is computable in time {\displaystyle 2^{|x|^{c}}} for some c, which again implicitly bounds the length of yi. Equivalently, EXPH is the class of languages computable in time {\displaystyle 2^{n^{c}}} on an alternating Turing machine with constantly many alternations.
Comparison
[edit ]References
[edit ]- ^ Sarah Mocas, Separating classes in the exponential-time hierarchy from classes in PH, Theoretical Computer Science 158 (1996), no. 1–2, pp. 221–231.
- ^ a b Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109–122.
- ^ Hemachandra, Lane A. (1989). "The strong exponential hierarchy collapses". Journal of Computer and System Sciences . 39 (3): 299–322. doi:10.1016/0022-0000(89)90025-1.