Jump to content
Wikipedia The Free Encyclopedia

Exact differential equation

From Wikipedia, the free encyclopedia
Type of differential equation subject to a particular solution methodology
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Exact differential equation" – news · newspapers · books · scholar · JSTOR
(December 2009) (Learn how and when to remove this message)
Differential equations
Scope
Classification
Solution
People

In mathematics, an exact differential equation or total differential equation is a certain kind of ordinary differential equation which is widely used in physics and engineering.

Definition

[edit ]

Given a simply connected and open subset D of R 2 {\displaystyle \mathbb {R} ^{2}} {\displaystyle \mathbb {R} ^{2}} and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form

I ( x , y ) d x + J ( x , y ) d y = 0 , {\displaystyle I(x,y),円dx+J(x,y),円dy=0,} {\displaystyle I(x,y),円dx+J(x,y),円dy=0,}

is called an exact differential equation if there exists a continuously differentiable function F, called the potential function,[1] [2] so that

F x = I {\displaystyle {\frac {\partial F}{\partial x}}=I} {\displaystyle {\frac {\partial F}{\partial x}}=I}

and

F y = J . {\displaystyle {\frac {\partial F}{\partial y}}=J.} {\displaystyle {\frac {\partial F}{\partial y}}=J.}

An exact equation may also be presented in the following form:

I ( x , y ) + J ( x , y ) y ( x ) = 0 {\displaystyle I(x,y)+J(x,y),円y'(x)=0} {\displaystyle I(x,y)+J(x,y),円y'(x)=0}

where the same constraints on I and J apply for the differential equation to be exact.

The nomenclature of "exact differential equation" refers to the exact differential of a function. For a function F ( x 0 , x 1 , . . . , x n 1 , x n ) {\displaystyle F(x_{0},x_{1},...,x_{n-1},x_{n})} {\displaystyle F(x_{0},x_{1},...,x_{n-1},x_{n})}, the exact or total derivative with respect to x 0 {\displaystyle x_{0}} {\displaystyle x_{0}} is given by

d F d x 0 = F x 0 + i = 1 n F x i d x i d x 0 . {\displaystyle {\frac {dF}{dx_{0}}}={\frac {\partial F}{\partial x_{0}}}+\sum _{i=1}^{n}{\frac {\partial F}{\partial x_{i}}}{\frac {dx_{i}}{dx_{0}}}.} {\displaystyle {\frac {dF}{dx_{0}}}={\frac {\partial F}{\partial x_{0}}}+\sum _{i=1}^{n}{\frac {\partial F}{\partial x_{i}}}{\frac {dx_{i}}{dx_{0}}}.}

Example

[edit ]

The function F : R 2 R {\displaystyle F:\mathbb {R} ^{2}\to \mathbb {R} } {\displaystyle F:\mathbb {R} ^{2}\to \mathbb {R} } given by

F ( x , y ) = 1 2 ( x 2 + y 2 ) + c {\displaystyle F(x,y)={\frac {1}{2}}(x^{2}+y^{2})+c} {\displaystyle F(x,y)={\frac {1}{2}}(x^{2}+y^{2})+c}

is a potential function for the differential equation

x d x + y d y = 0. {\displaystyle x,円dx+y,円dy=0.,円} {\displaystyle x,円dx+y,円dy=0.,円}

First-order exact differential equations

[edit ]

Identifying first-order exact differential equations

[edit ]

Let the functions M {\textstyle M} {\textstyle M}, N {\textstyle N} {\textstyle N}, M y {\textstyle M_{y}} {\textstyle M_{y}}, and N x {\textstyle N_{x}} {\textstyle N_{x}}, where the subscripts denote the partial derivative with respect to the relative variable, be continuous in the region R : α < x < β , γ < y < δ {\textstyle R:\alpha <x<\beta ,\gamma <y<\delta } {\textstyle R:\alpha <x<\beta ,\gamma <y<\delta }. Then the differential equation

M ( x , y ) + N ( x , y ) d y d x = 0 {\displaystyle M(x,y)+N(x,y){\frac {dy}{dx}}=0} {\displaystyle M(x,y)+N(x,y){\frac {dy}{dx}}=0}

is exact if and only if

M y ( x , y ) = N x ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)} {\displaystyle M_{y}(x,y)=N_{x}(x,y)}

That is, there exists a function ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)}, called a potential function, such that

ψ x ( x , y ) = M ( x , y )  and  ψ y ( x , y ) = N ( x , y ) {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)} {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)}

So, in general:

M y ( x , y ) = N x ( x , y ) { ψ ( x , y ) ψ x ( x , y ) = M ( x , y ) ψ y ( x , y ) = N ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)\iff {\begin{cases}\exists \psi (x,y)\\\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}} {\displaystyle M_{y}(x,y)=N_{x}(x,y)\iff {\begin{cases}\exists \psi (x,y)\\\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}}

Proof

[edit ]

The proof has two parts.

First, suppose there is a function ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)} such that ψ x ( x , y ) = M ( x , y )  and  ψ y ( x , y ) = N ( x , y ) {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)} {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)}

It then follows that M y ( x , y ) = ψ x y ( x , y )  and  N x ( x , y ) = ψ y x ( x , y ) {\displaystyle M_{y}(x,y)=\psi _{xy}(x,y){\text{ and }}N_{x}(x,y)=\psi _{yx}(x,y)} {\displaystyle M_{y}(x,y)=\psi _{xy}(x,y){\text{ and }}N_{x}(x,y)=\psi _{yx}(x,y)}

Since M y {\displaystyle M_{y}} {\displaystyle M_{y}} and N x {\displaystyle N_{x}} {\displaystyle N_{x}} are continuous, then ψ x y {\displaystyle \psi _{xy}} {\displaystyle \psi _{xy}} and ψ y x {\displaystyle \psi _{yx}} {\displaystyle \psi _{yx}} are also continuous which guarantees their equality.

The second part of the proof involves the construction of ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)} and can also be used as a procedure for solving first-order exact differential equations. Suppose that M y ( x , y ) = N x ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)} {\displaystyle M_{y}(x,y)=N_{x}(x,y)} and let there be a function ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)} for which ψ x ( x , y ) = M ( x , y )  and  ψ y ( x , y ) = N ( x , y ) {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)} {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)}

Begin by integrating the first equation with respect to x {\displaystyle x} {\displaystyle x}. In practice, it doesn't matter if you integrate the first or the second equation, so long as the integration is done with respect to the appropriate variable.

ψ x ( x , y ) = M ( x , y ) {\displaystyle {\frac {\partial \psi }{\partial x}}(x,y)=M(x,y)} {\displaystyle {\frac {\partial \psi }{\partial x}}(x,y)=M(x,y)} ψ ( x , y ) = M ( x , y ) d x + h ( y ) {\displaystyle \psi (x,y)=\int M(x,y),円dx+h(y)} {\displaystyle \psi (x,y)=\int M(x,y),円dx+h(y)} ψ ( x , y ) = Q ( x , y ) + h ( y ) {\displaystyle \psi (x,y)=Q(x,y)+h(y)} {\displaystyle \psi (x,y)=Q(x,y)+h(y)}

where Q ( x , y ) {\displaystyle Q(x,y)} {\displaystyle Q(x,y)} is any differentiable function such that Q x = M {\displaystyle Q_{x}=M} {\displaystyle Q_{x}=M}. The function h ( y ) {\displaystyle h(y)} {\displaystyle h(y)} plays the role of a constant of integration, but instead of just a constant, it is function of y {\displaystyle y} {\displaystyle y}, since M {\displaystyle M} {\displaystyle M} is a function of both x {\displaystyle x} {\displaystyle x} and y {\displaystyle y} {\displaystyle y} and we are only integrating with respect to x {\displaystyle x} {\displaystyle x}.

Now to show that it is always possible to find an h ( y ) {\displaystyle h(y)} {\displaystyle h(y)} such that ψ y = N {\displaystyle \psi _{y}=N} {\displaystyle \psi _{y}=N}. ψ ( x , y ) = Q ( x , y ) + h ( y ) {\displaystyle \psi (x,y)=Q(x,y)+h(y)} {\displaystyle \psi (x,y)=Q(x,y)+h(y)}

Differentiate both sides with respect to y {\displaystyle y} {\displaystyle y}. ψ y ( x , y ) = Q y ( x , y ) + h ( y ) {\displaystyle {\frac {\partial \psi }{\partial y}}(x,y)={\frac {\partial Q}{\partial y}}(x,y)+h'(y)} {\displaystyle {\frac {\partial \psi }{\partial y}}(x,y)={\frac {\partial Q}{\partial y}}(x,y)+h'(y)}

Set the result equal to N {\displaystyle N} {\displaystyle N} and solve for h ( y ) {\displaystyle h'(y)} {\displaystyle h'(y)}. h ( y ) = N ( x , y ) Q y ( x , y ) {\displaystyle h'(y)=N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)} {\displaystyle h'(y)=N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)}

In order to determine h ( y ) {\displaystyle h'(y)} {\displaystyle h'(y)} from this equation, the right-hand side must depend only on y {\displaystyle y} {\displaystyle y}. This can be proven by showing that its derivative with respect to x {\displaystyle x} {\displaystyle x} is always zero, so differentiate the right-hand side with respect to x {\displaystyle x} {\displaystyle x}. N x ( x , y ) x Q y ( x , y ) N x ( x , y ) y Q x ( x , y ) {\displaystyle {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial }{\partial x}}{\frac {\partial Q}{\partial y}}(x,y)\iff {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial }{\partial y}}{\frac {\partial Q}{\partial x}}(x,y)} {\displaystyle {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial }{\partial x}}{\frac {\partial Q}{\partial y}}(x,y)\iff {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial }{\partial y}}{\frac {\partial Q}{\partial x}}(x,y)}

Since Q x = M {\displaystyle Q_{x}=M} {\displaystyle Q_{x}=M}, N x ( x , y ) M y ( x , y ) {\displaystyle {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial M}{\partial y}}(x,y)} {\displaystyle {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial M}{\partial y}}(x,y)} Now, this is zero based on our initial supposition that M y ( x , y ) = N x ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)} {\displaystyle M_{y}(x,y)=N_{x}(x,y)}

Therefore, h ( y ) = N ( x , y ) Q y ( x , y ) {\displaystyle h'(y)=N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)} {\displaystyle h'(y)=N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)} h ( y ) = ( N ( x , y ) Q y ( x , y ) ) d y {\displaystyle h(y)=\int {\left(N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)\right)dy}} {\displaystyle h(y)=\int {\left(N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)\right)dy}}

ψ ( x , y ) = Q ( x , y ) + ( N ( x , y ) Q y ( x , y ) ) d y + C {\displaystyle \psi (x,y)=Q(x,y)+\int \left(N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)\right),円dy+C} {\displaystyle \psi (x,y)=Q(x,y)+\int \left(N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)\right),円dy+C}

And this completes the proof.

Solutions to first-order exact differential equations

[edit ]

First-order exact differential equations of the form M ( x , y ) + N ( x , y ) d y d x = 0 {\displaystyle M(x,y)+N(x,y){\frac {dy}{dx}}=0} {\displaystyle M(x,y)+N(x,y){\frac {dy}{dx}}=0}

can be written in terms of the potential function ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)} ψ x + ψ y d y d x = 0 {\displaystyle {\frac {\partial \psi }{\partial x}}+{\frac {\partial \psi }{\partial y}}{\frac {dy}{dx}}=0} {\displaystyle {\frac {\partial \psi }{\partial x}}+{\frac {\partial \psi }{\partial y}}{\frac {dy}{dx}}=0}

where { ψ x ( x , y ) = M ( x , y ) ψ y ( x , y ) = N ( x , y ) {\displaystyle {\begin{cases}\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}} {\displaystyle {\begin{cases}\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}}

This is equivalent to taking the total derivative of ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)}. ψ x + ψ y d y d x = 0 d d x ψ ( x , y ( x ) ) = 0 {\displaystyle {\frac {\partial \psi }{\partial x}}+{\frac {\partial \psi }{\partial y}}{\frac {dy}{dx}}=0\iff {\frac {d}{dx}}\psi (x,y(x))=0} {\displaystyle {\frac {\partial \psi }{\partial x}}+{\frac {\partial \psi }{\partial y}}{\frac {dy}{dx}}=0\iff {\frac {d}{dx}}\psi (x,y(x))=0}

The solutions to an exact differential equation are then given by ψ ( x , y ( x ) ) = c {\displaystyle \psi (x,y(x))=c} {\displaystyle \psi (x,y(x))=c}

and the problem reduces to finding ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)}.

This can be done by integrating the two expressions M ( x , y ) d x {\displaystyle M(x,y),円dx} {\displaystyle M(x,y),円dx} and N ( x , y ) d y {\displaystyle N(x,y),円dy} {\displaystyle N(x,y),円dy} and then writing down each term in the resulting expressions only once and summing them up in order to get ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)}.

The reasoning behind this is the following. Since { ψ x ( x , y ) = M ( x , y ) ψ y ( x , y ) = N ( x , y ) {\displaystyle {\begin{cases}\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}} {\displaystyle {\begin{cases}\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}}

it follows, by integrating both sides, that { ψ ( x , y ) = M ( x , y ) d x + h ( y ) = Q ( x , y ) + h ( y ) ψ ( x , y ) = N ( x , y ) d y + g ( x ) = P ( x , y ) + g ( x ) {\displaystyle {\begin{cases}\psi (x,y)=\int M(x,y),円dx+h(y)=Q(x,y)+h(y)\\\psi (x,y)=\int N(x,y),円dy+g(x)=P(x,y)+g(x)\end{cases}}} {\displaystyle {\begin{cases}\psi (x,y)=\int M(x,y),円dx+h(y)=Q(x,y)+h(y)\\\psi (x,y)=\int N(x,y),円dy+g(x)=P(x,y)+g(x)\end{cases}}}

Therefore, Q ( x , y ) + h ( y ) = P ( x , y ) + g ( x ) {\displaystyle Q(x,y)+h(y)=P(x,y)+g(x)} {\displaystyle Q(x,y)+h(y)=P(x,y)+g(x)}

where Q ( x , y ) {\displaystyle Q(x,y)} {\displaystyle Q(x,y)} and P ( x , y ) {\displaystyle P(x,y)} {\displaystyle P(x,y)} are differentiable functions such that Q x = M {\displaystyle Q_{x}=M} {\displaystyle Q_{x}=M} and P y = N {\displaystyle P_{y}=N} {\displaystyle P_{y}=N}.

In order for this to be true and for both sides to result in the exact same expression, namely ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)}, then h ( y ) {\displaystyle h(y)} {\displaystyle h(y)} must be contained within the expression for P ( x , y ) {\displaystyle P(x,y)} {\displaystyle P(x,y)} because it cannot be contained within g ( x ) {\displaystyle g(x)} {\displaystyle g(x)}, since it is entirely a function of y {\displaystyle y} {\displaystyle y} and not x {\displaystyle x} {\displaystyle x} and is therefore not allowed to have anything to do with x {\displaystyle x} {\displaystyle x}. By analogy, g ( x ) {\displaystyle g(x)} {\displaystyle g(x)} must be contained within the expression Q ( x , y ) {\displaystyle Q(x,y)} {\displaystyle Q(x,y)}.

Ergo, Q ( x , y ) = g ( x ) + f ( x , y )  and  P ( x , y ) = h ( y ) + d ( x , y ) {\displaystyle Q(x,y)=g(x)+f(x,y){\text{ and }}P(x,y)=h(y)+d(x,y)} {\displaystyle Q(x,y)=g(x)+f(x,y){\text{ and }}P(x,y)=h(y)+d(x,y)}

for some expressions f ( x , y ) {\displaystyle f(x,y)} {\displaystyle f(x,y)} and d ( x , y ) {\displaystyle d(x,y)} {\displaystyle d(x,y)}. Plugging in into the above equation, we find that g ( x ) + f ( x , y ) + h ( y ) = h ( y ) + d ( x , y ) + g ( x ) f ( x , y ) = d ( x , y ) {\displaystyle g(x)+f(x,y)+h(y)=h(y)+d(x,y)+g(x)\Rightarrow f(x,y)=d(x,y)} {\displaystyle g(x)+f(x,y)+h(y)=h(y)+d(x,y)+g(x)\Rightarrow f(x,y)=d(x,y)} and so f ( x , y ) {\displaystyle f(x,y)} {\displaystyle f(x,y)} and d ( x , y ) {\displaystyle d(x,y)} {\displaystyle d(x,y)} turn out to be the same function. Therefore, Q ( x , y ) = g ( x ) + f ( x , y )  and  P ( x , y ) = h ( y ) + f ( x , y ) {\displaystyle Q(x,y)=g(x)+f(x,y){\text{ and }}P(x,y)=h(y)+f(x,y)} {\displaystyle Q(x,y)=g(x)+f(x,y){\text{ and }}P(x,y)=h(y)+f(x,y)}

Since we already showed that { ψ ( x , y ) = Q ( x , y ) + h ( y ) ψ ( x , y ) = P ( x , y ) + g ( x ) {\displaystyle {\begin{cases}\psi (x,y)=Q(x,y)+h(y)\\\psi (x,y)=P(x,y)+g(x)\end{cases}}} {\displaystyle {\begin{cases}\psi (x,y)=Q(x,y)+h(y)\\\psi (x,y)=P(x,y)+g(x)\end{cases}}}

it follows that ψ ( x , y ) = g ( x ) + f ( x , y ) + h ( y ) {\displaystyle \psi (x,y)=g(x)+f(x,y)+h(y)} {\displaystyle \psi (x,y)=g(x)+f(x,y)+h(y)}

So, we can construct ψ ( x , y ) {\displaystyle \psi (x,y)} {\displaystyle \psi (x,y)} by doing M ( x , y ) d x {\displaystyle \int M(x,y),円dx} {\displaystyle \int M(x,y),円dx} and N ( x , y ) d y {\displaystyle \int N(x,y),円dy} {\displaystyle \int N(x,y),円dy} and then taking the common terms we find within the two resulting expressions (that would be f ( x , y ) {\displaystyle f(x,y)} {\displaystyle f(x,y)} ) and then adding the terms which are uniquely found in either one of them – g ( x ) {\displaystyle g(x)} {\displaystyle g(x)} and h ( y ) {\displaystyle h(y)} {\displaystyle h(y)}.

Second-order exact differential equations

[edit ]

The concept of exact differential equations can be extended to second-order equations.[3] Consider starting with the first-order exact equation:

I ( x , y ) + J ( x , y ) d y d x = 0 {\displaystyle I(x,y)+J(x,y){dy \over dx}=0} {\displaystyle I(x,y)+J(x,y){dy \over dx}=0}

Since both functions I ( x , y ) {\displaystyle I(x,y)} {\displaystyle I(x,y)}, J ( x , y ) {\displaystyle J(x,y)} {\displaystyle J(x,y)} are functions of two variables, implicitly differentiating the multivariate function yields

d I d x + ( d J d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle {dI \over dx}+\left({dJ \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0} {\displaystyle {dI \over dx}+\left({dJ \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0}

Expanding the total derivatives gives that

d I d x = I x + I y d y d x {\displaystyle {dI \over dx}={\partial I \over \partial x}+{\partial I \over \partial y}{dy \over dx}} {\displaystyle {dI \over dx}={\partial I \over \partial x}+{\partial I \over \partial y}{dy \over dx}}

and that

d J d x = J x + J y d y d x {\displaystyle {dJ \over dx}={\partial J \over \partial x}+{\partial J \over \partial y}{dy \over dx}} {\displaystyle {dJ \over dx}={\partial J \over \partial x}+{\partial J \over \partial y}{dy \over dx}}

Combining the d y d x {\textstyle {dy \over dx}} {\textstyle {dy \over dx}} terms gives

I x + d y d x ( I y + J x + J y d y d x ) + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle {\partial I \over \partial x}+{dy \over dx}\left({\partial I \over \partial y}+{\partial J \over \partial x}+{\partial J \over \partial y}{dy \over dx}\right)+{d^{2}y \over dx^{2}}(J(x,y))=0} {\displaystyle {\partial I \over \partial x}+{dy \over dx}\left({\partial I \over \partial y}+{\partial J \over \partial x}+{\partial J \over \partial y}{dy \over dx}\right)+{d^{2}y \over dx^{2}}(J(x,y))=0}

If the equation is exact, then J x = I y {\textstyle {\partial J \over \partial x}={\partial I \over \partial y}} {\textstyle {\partial J \over \partial x}={\partial I \over \partial y}}. Additionally, the total derivative of J ( x , y ) {\displaystyle J(x,y)} {\displaystyle J(x,y)} is equal to its implicit ordinary derivative d J d x {\textstyle {dJ \over dx}} {\textstyle {dJ \over dx}}. This leads to the rewritten equation

I x + d y d x ( J x + d J d x ) + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle {\partial I \over \partial x}+{dy \over dx}\left({\partial J \over \partial x}+{dJ \over dx}\right)+{d^{2}y \over dx^{2}}(J(x,y))=0} {\displaystyle {\partial I \over \partial x}+{dy \over dx}\left({\partial J \over \partial x}+{dJ \over dx}\right)+{d^{2}y \over dx^{2}}(J(x,y))=0}

Now, let there be some second-order differential equation

f ( x , y ) + g ( x , y , d y d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle f(x,y)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0} {\displaystyle f(x,y)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0}

If J x = I y {\displaystyle {\partial J \over \partial x}={\partial I \over \partial y}} {\displaystyle {\partial J \over \partial x}={\partial I \over \partial y}} for exact differential equations, then

( I y ) d y = ( J x ) d y {\displaystyle \int \left({\partial I \over \partial y}\right),円dy=\int \left({\partial J \over \partial x}\right),円dy} {\displaystyle \int \left({\partial I \over \partial y}\right),円dy=\int \left({\partial J \over \partial x}\right),円dy}

and

( I y ) d y = ( J x ) d y = I ( x , y ) h ( x ) {\displaystyle \int \left({\partial I \over \partial y}\right),円dy=\int \left({\partial J \over \partial x}\right),円dy=I(x,y)-h(x)} {\displaystyle \int \left({\partial I \over \partial y}\right),円dy=\int \left({\partial J \over \partial x}\right),円dy=I(x,y)-h(x)}

where h ( x ) {\displaystyle h(x)} {\displaystyle h(x)} is some arbitrary function only of x {\displaystyle x} {\displaystyle x} that was differentiated away to zero upon taking the partial derivative of I ( x , y ) {\displaystyle I(x,y)} {\displaystyle I(x,y)} with respect to y {\displaystyle y} {\displaystyle y}. Although the sign on h ( x ) {\displaystyle h(x)} {\displaystyle h(x)} could be positive, it is more intuitive to think of the integral's result as I ( x , y ) {\displaystyle I(x,y)} {\displaystyle I(x,y)} that is missing some original extra function h ( x ) {\displaystyle h(x)} {\displaystyle h(x)} that was partially differentiated to zero.

Next, if

d I d x = I x + I y d y d x {\displaystyle {dI \over dx}={\partial I \over \partial x}+{\partial I \over \partial y}{dy \over dx}} {\displaystyle {dI \over dx}={\partial I \over \partial x}+{\partial I \over \partial y}{dy \over dx}}

then the term I x {\displaystyle {\partial I \over \partial x}} {\displaystyle {\partial I \over \partial x}} should be a function only of x {\displaystyle x} {\displaystyle x} and y {\displaystyle y} {\displaystyle y}, since partial differentiation with respect to x {\displaystyle x} {\displaystyle x} will hold y {\displaystyle y} {\displaystyle y} constant and not produce any derivatives of y {\displaystyle y} {\displaystyle y}. In the second-order equation

f ( x , y ) + g ( x , y , d y d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle f(x,y)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0} {\displaystyle f(x,y)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0}

only the term f ( x , y ) {\displaystyle f(x,y)} {\displaystyle f(x,y)} is a term purely of x {\displaystyle x} {\displaystyle x} and y {\displaystyle y} {\displaystyle y}. Let I x = f ( x , y ) {\displaystyle {\partial I \over \partial x}=f(x,y)} {\displaystyle {\partial I \over \partial x}=f(x,y)}. If I x = f ( x , y ) {\displaystyle {\partial I \over \partial x}=f(x,y)} {\displaystyle {\partial I \over \partial x}=f(x,y)}, then

f ( x , y ) = d I d x I y d y d x {\displaystyle f(x,y)={dI \over dx}-{\partial I \over \partial y}{dy \over dx}} {\displaystyle f(x,y)={dI \over dx}-{\partial I \over \partial y}{dy \over dx}}

Since the total derivative of I ( x , y ) {\displaystyle I(x,y)} {\displaystyle I(x,y)} with respect to x {\displaystyle x} {\displaystyle x} is equivalent to the implicit ordinary derivative d I d x {\displaystyle {dI \over dx}} {\displaystyle {dI \over dx}} , then

f ( x , y ) + I y d y d x = d I d x = d d x ( I ( x , y ) h ( x ) ) + d h ( x ) d x {\displaystyle f(x,y)+{\partial I \over \partial y}{dy \over dx}={dI \over dx}={d \over dx}(I(x,y)-h(x))+{dh(x) \over dx}} {\displaystyle f(x,y)+{\partial I \over \partial y}{dy \over dx}={dI \over dx}={d \over dx}(I(x,y)-h(x))+{dh(x) \over dx}}

So,

d h ( x ) d x = f ( x , y ) + I y d y d x d d x ( I ( x , y ) h ( x ) ) {\displaystyle {dh(x) \over dx}=f(x,y)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}(I(x,y)-h(x))} {\displaystyle {dh(x) \over dx}=f(x,y)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}(I(x,y)-h(x))}

and

h ( x ) = ( f ( x , y ) + I y d y d x d d x ( I ( x , y ) h ( x ) ) ) d x {\displaystyle h(x)=\int \left(f(x,y)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}(I(x,y)-h(x))\right),円dx} {\displaystyle h(x)=\int \left(f(x,y)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}(I(x,y)-h(x))\right),円dx}

Thus, the second-order differential equation

f ( x , y ) + g ( x , y , d y d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle f(x,y)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0} {\displaystyle f(x,y)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}(J(x,y))=0}

is exact only if g ( x , y , d y d x ) = d J d x + J x = d J d x + J x {\displaystyle g\left(x,y,{dy \over dx}\right)={dJ \over dx}+{\partial J \over \partial x}={dJ \over dx}+{\partial J \over \partial x}} {\displaystyle g\left(x,y,{dy \over dx}\right)={dJ \over dx}+{\partial J \over \partial x}={dJ \over dx}+{\partial J \over \partial x}} and only if the below expression

( f ( x , y ) + I y d y d x d d x ( I ( x , y ) h ( x ) ) ) d x = ( f ( x , y ) ( I ( x , y ) h ( x ) ) x ) d x {\displaystyle \int \left(f(x,y)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}(I(x,y)-h(x))\right),円dx=\int \left(f(x,y)-{\partial \left(I(x,y)-h(x)\right) \over \partial x}\right),円dx} {\displaystyle \int \left(f(x,y)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}(I(x,y)-h(x))\right),円dx=\int \left(f(x,y)-{\partial \left(I(x,y)-h(x)\right) \over \partial x}\right),円dx}

is a function solely of x {\displaystyle x} {\displaystyle x}. Once h ( x ) {\displaystyle h(x)} {\displaystyle h(x)} is calculated with its arbitrary constant, it is added to I ( x , y ) h ( x ) {\displaystyle I(x,y)-h(x)} {\displaystyle I(x,y)-h(x)} to make I ( x , y ) {\displaystyle I(x,y)} {\displaystyle I(x,y)}. If the equation is exact, then we can reduce to the first-order exact form which is solvable by the usual method for first-order exact equations.

I ( x , y ) + J ( x , y ) d y d x = 0 {\displaystyle I(x,y)+J(x,y){dy \over dx}=0} {\displaystyle I(x,y)+J(x,y){dy \over dx}=0}

Now, however, in the final implicit solution there will be a C 1 x {\displaystyle C_{1}x} {\displaystyle C_{1}x} term from integration of h ( x ) {\displaystyle h(x)} {\displaystyle h(x)} with respect to x {\displaystyle x} {\displaystyle x} twice as well as a C 2 {\displaystyle C_{2}} {\displaystyle C_{2}}, two arbitrary constants as expected from a second-order equation.

Example

[edit ]

Given the differential equation

( 1 x 2 ) y 4 x y 2 y = 0 {\displaystyle (1-x^{2})y''-4xy'-2y=0} {\displaystyle (1-x^{2})y''-4xy'-2y=0}

one can always easily check for exactness by examining the y {\displaystyle y''} {\displaystyle y''} term. In this case, both the partial and total derivative of 1 x 2 {\displaystyle 1-x^{2}} {\displaystyle 1-x^{2}} with respect to x {\displaystyle x} {\displaystyle x} are 2 x {\displaystyle -2x} {\displaystyle -2x}, so their sum is 4 x {\displaystyle -4x} {\displaystyle -4x}, which is exactly the term in front of y {\displaystyle y'} {\displaystyle y'}. With one of the conditions for exactness met, one can calculate that

( 2 x ) d y = I ( x , y ) h ( x ) = 2 x y {\displaystyle \int (-2x),円dy=I(x,y)-h(x)=-2xy} {\displaystyle \int (-2x),円dy=I(x,y)-h(x)=-2xy}

Letting f ( x , y ) = 2 y {\displaystyle f(x,y)=-2y} {\displaystyle f(x,y)=-2y}, then

( 2 y 2 x y d d x ( 2 x y ) ) d x = ( 2 y 2 x y + 2 x y + 2 y ) d x = ( 0 ) d x = h ( x ) {\displaystyle \int \left(-2y-2xy'-{d \over dx}(-2xy)\right),円dx=\int (-2y-2xy'+2xy'+2y),円dx=\int (0),円dx=h(x)} {\displaystyle \int \left(-2y-2xy'-{d \over dx}(-2xy)\right),円dx=\int (-2y-2xy'+2xy'+2y),円dx=\int (0),円dx=h(x)}

So, h ( x ) {\displaystyle h(x)} {\displaystyle h(x)} is indeed a function only of x {\displaystyle x} {\displaystyle x} and the second-order differential equation is exact. Therefore, h ( x ) = C 1 {\displaystyle h(x)=C_{1}} {\displaystyle h(x)=C_{1}} and I ( x , y ) = 2 x y + C 1 {\displaystyle I(x,y)=-2xy+C_{1}} {\displaystyle I(x,y)=-2xy+C_{1}}. Reduction to a first-order exact equation yields

2 x y + C 1 + ( 1 x 2 ) y = 0 {\displaystyle -2xy+C_{1}+(1-x^{2})y'=0} {\displaystyle -2xy+C_{1}+(1-x^{2})y'=0}

Integrating I ( x , y ) {\displaystyle I(x,y)} {\displaystyle I(x,y)} with respect to x {\displaystyle x} {\displaystyle x} yields

x 2 y + C 1 x + i ( y ) = 0 {\displaystyle -x^{2}y+C_{1}x+i(y)=0} {\displaystyle -x^{2}y+C_{1}x+i(y)=0}

where i ( y ) {\displaystyle i(y)} {\displaystyle i(y)} is some arbitrary function of y {\displaystyle y} {\displaystyle y}. Differentiating with respect to y {\displaystyle y} {\displaystyle y} gives an equation correlating the derivative and the y {\displaystyle y'} {\displaystyle y'} term.

x 2 + i ( y ) = 1 x 2 {\displaystyle -x^{2}+i'(y)=1-x^{2}} {\displaystyle -x^{2}+i'(y)=1-x^{2}}

So, i ( y ) = y + C 2 {\displaystyle i(y)=y+C_{2}} {\displaystyle i(y)=y+C_{2}} and the full implicit solution becomes

C 1 x + C 2 + y x 2 y = 0 {\displaystyle C_{1}x+C_{2}+y-x^{2}y=0} {\displaystyle C_{1}x+C_{2}+y-x^{2}y=0}

Solving explicitly for y {\displaystyle y} {\displaystyle y} yields

y = C 1 x + C 2 1 x 2 {\displaystyle y={\frac {C_{1}x+C_{2}}{1-x^{2}}}} {\displaystyle y={\frac {C_{1}x+C_{2}}{1-x^{2}}}}

Higher-order exact differential equations

[edit ]

The concepts of exact differential equations can be extended to any order. Starting with the exact second-order equation

d 2 y d x 2 ( J ( x , y ) ) + d y d x ( d J d x + J x ) + f ( x , y ) = 0 {\displaystyle {d^{2}y \over dx^{2}}(J(x,y))+{dy \over dx}\left({dJ \over dx}+{\partial J \over \partial x}\right)+f(x,y)=0} {\displaystyle {d^{2}y \over dx^{2}}(J(x,y))+{dy \over dx}\left({dJ \over dx}+{\partial J \over \partial x}\right)+f(x,y)=0}

it was previously shown that equation is defined such that

f ( x , y t ) = d h t ( x ) d x + d d x ( I ( x , y ) h ( x ) ) J x d y d x {\displaystyle f(x,yt)={dht(x) \over dx}+{d \over dx}(I(x,y)-h(x))-{\partial J \over \partial x}{dy \over dx}} {\displaystyle f(x,yt)={dht(x) \over dx}+{d \over dx}(I(x,y)-h(x))-{\partial J \over \partial x}{dy \over dx}}

Implicit differentiation of the exact second-order equation n {\displaystyle n} {\displaystyle n} times will yield an ( n + 2 ) {\displaystyle (n+2)} {\displaystyle (n+2)}th-order differential equation with new conditions for exactness that can be readily deduced from the form of the equation produced. For example, differentiating the above second-order differential equation once to yield a third-order exact equation gives the following form

d 3 y d x 3 ( J ( x , y ) ) + d 2 y d x 2 d J d x + d 2 y d x 2 ( d J d x + J x ) + d y d x ( d 2 J d x 2 + d d x ( J x ) ) + d f ( x , y ) d x = 0 {\displaystyle {d^{3}y \over dx^{3}}(J(x,y))+{d^{2}y \over dx^{2}}{dJ \over dx}+{d^{2}y \over dx^{2}}\left({dJ \over dx}+{\partial J \over \partial x}\right)+{dy \over dx}\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)+{df(x,y) \over dx}=0} {\displaystyle {d^{3}y \over dx^{3}}(J(x,y))+{d^{2}y \over dx^{2}}{dJ \over dx}+{d^{2}y \over dx^{2}}\left({dJ \over dx}+{\partial J \over \partial x}\right)+{dy \over dx}\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)+{df(x,y) \over dx}=0}

where

d f ( x , y ) d x = d 2 h ( x ) d x 2 + d 2 d x 2 ( I ( x , y ) h ( x ) ) d 2 y d x 2 J x d y d x d d x ( J x ) = F ( x , y , d y d x ) {\displaystyle {df(x,y) \over dx}={d^{2}h(x) \over dx^{2}}+{d^{2} \over dx^{2}}(I(x,y)-h(x))-{d^{2}y \over dx^{2}}{\partial J \over \partial x}-{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)=F\left(x,y,{dy \over dx}\right)} {\displaystyle {df(x,y) \over dx}={d^{2}h(x) \over dx^{2}}+{d^{2} \over dx^{2}}(I(x,y)-h(x))-{d^{2}y \over dx^{2}}{\partial J \over \partial x}-{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)=F\left(x,y,{dy \over dx}\right)}

and where F ( x , y , d y d x ) {\displaystyle F\left(x,y,{dy \over dx}\right)} {\displaystyle F\left(x,y,{dy \over dx}\right)} is a function only of x , y {\displaystyle x,y} {\displaystyle x,y} and d y d x {\displaystyle {dy \over dx}} {\displaystyle {dy \over dx}}. Combining all d y d x {\displaystyle {dy \over dx}} {\displaystyle {dy \over dx}} and d 2 y d x 2 {\displaystyle {d^{2}y \over dx^{2}}} {\displaystyle {d^{2}y \over dx^{2}}} terms not coming from F ( x , y , d y d x ) {\displaystyle F\left(x,y,{dy \over dx}\right)} {\displaystyle F\left(x,y,{dy \over dx}\right)} gives

d 3 y d x 3 ( J ( x , y ) ) + d 2 y d x 2 ( 2 d J d x + J x ) + d y d x ( d 2 J d x 2 + d d x ( J x ) ) + F ( x , y , d y d x ) = 0 {\displaystyle {d^{3}y \over dx^{3}}(J(x,y))+{d^{2}y \over dx^{2}}\left(2{dJ \over dx}+{\partial J \over \partial x}\right)+{dy \over dx}\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)+F\left(x,y,{dy \over dx}\right)=0} {\displaystyle {d^{3}y \over dx^{3}}(J(x,y))+{d^{2}y \over dx^{2}}\left(2{dJ \over dx}+{\partial J \over \partial x}\right)+{dy \over dx}\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)+F\left(x,y,{dy \over dx}\right)=0}

Thus, the three conditions for exactness for a third-order differential equation are: the d 2 y d x 2 {\displaystyle {d^{2}y \over dx^{2}}} {\displaystyle {d^{2}y \over dx^{2}}} term must be 2 d J d x + J x {\displaystyle 2{dJ \over dx}+{\partial J \over \partial x}} {\displaystyle 2{dJ \over dx}+{\partial J \over \partial x}}, the d y d x {\displaystyle {dy \over dx}} {\displaystyle {dy \over dx}} term must be d 2 J d x 2 + d d x ( J x ) {\displaystyle {d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)} {\displaystyle {d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)} and

F ( x , y , d y d x ) d 2 d x 2 ( I ( x , y ) h ( x ) ) + d 2 y d x 2 J x + d y d x d d x ( J x ) {\displaystyle F\left(x,y,{dy \over dx}\right)-{d^{2} \over dx^{2}}(I(x,y)-h(x))+{d^{2}y \over dx^{2}}{\partial J \over \partial x}+{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)} {\displaystyle F\left(x,y,{dy \over dx}\right)-{d^{2} \over dx^{2}}(I(x,y)-h(x))+{d^{2}y \over dx^{2}}{\partial J \over \partial x}+{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)}

must be a function solely of x {\displaystyle x} {\displaystyle x}.

Example

[edit ]

Consider the nonlinear third-order differential equation

y y + 3 y y + 12 x 2 = 0 {\displaystyle yy'''+3y'y''+12x^{2}=0} {\displaystyle yy'''+3y'y''+12x^{2}=0}

If J ( x , y ) = y {\displaystyle J(x,y)=y} {\displaystyle J(x,y)=y}, then y ( 2 d J d x + J x ) {\displaystyle y''\left(2{dJ \over dx}+{\partial J \over \partial x}\right)} {\displaystyle y''\left(2{dJ \over dx}+{\partial J \over \partial x}\right)} is 2 y y {\displaystyle 2y'y''} {\displaystyle 2y'y''} and y ( d 2 J d x 2 + d d x ( J x ) ) = y y {\displaystyle y'\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)=y'y''} {\displaystyle y'\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)=y'y''}which together sum to 3 y y {\displaystyle 3y'y''} {\displaystyle 3y'y''}. Fortunately, this appears in our equation. For the last condition of exactness,

F ( x , y , d y d x ) d 2 d x 2 ( I ( x , y ) h ( x ) ) + d 2 y d x 2 J x + d y d x d d x ( J x ) = 12 x 2 0 + 0 + 0 = 12 x 2 {\displaystyle F\left(x,y,{dy \over dx}\right)-{d^{2} \over dx^{2}}\left(I(x,y)-h(x)\right)+{d^{2}y \over dx^{2}}{\partial J \over \partial x}+{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)=12x^{2}-0+0+0=12x^{2}} {\displaystyle F\left(x,y,{dy \over dx}\right)-{d^{2} \over dx^{2}}\left(I(x,y)-h(x)\right)+{d^{2}y \over dx^{2}}{\partial J \over \partial x}+{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)=12x^{2}-0+0+0=12x^{2}}

which is indeed a function only of x {\displaystyle x} {\displaystyle x}. So, the differential equation is exact. Integrating twice yields that h ( x ) = x 4 + C 1 x + C 2 = I ( x , y ) {\displaystyle h(x)=x^{4}+C_{1}x+C_{2}=I(x,y)} {\displaystyle h(x)=x^{4}+C_{1}x+C_{2}=I(x,y)}. Rewriting the equation as a first-order exact differential equation yields

x 4 + C 1 x + C 2 + y y = 0 {\displaystyle x^{4}+C_{1}x+C_{2}+yy'=0} {\displaystyle x^{4}+C_{1}x+C_{2}+yy'=0}

Integrating I ( x , y ) {\displaystyle I(x,y)} {\displaystyle I(x,y)} with respect to x {\displaystyle x} {\displaystyle x} gives that x 5 5 + C 1 x 2 + C 2 x + i ( y ) = 0 {\displaystyle {x^{5} \over 5}+C_{1}x^{2}+C_{2}x+i(y)=0} {\displaystyle {x^{5} \over 5}+C_{1}x^{2}+C_{2}x+i(y)=0}. Differentiating with respect to y {\displaystyle y} {\displaystyle y} and equating that to the term in front of y {\displaystyle y'} {\displaystyle y'} in the first-order equation gives that i ( y ) = y {\displaystyle i'(y)=y} {\displaystyle i'(y)=y} and that i ( y ) = y 2 2 + C 3 {\displaystyle i(y)={y^{2} \over 2}+C_{3}} {\displaystyle i(y)={y^{2} \over 2}+C_{3}}. The full implicit solution becomes

x 5 5 + C 1 x 2 + C 2 x + C 3 + y 2 2 = 0 {\displaystyle {x^{5} \over 5}+C_{1}x^{2}+C_{2}x+C_{3}+{y^{2} \over 2}=0} {\displaystyle {x^{5} \over 5}+C_{1}x^{2}+C_{2}x+C_{3}+{y^{2} \over 2}=0}

The explicit solution, then, is

y = ± C 1 x 2 + C 2 x + C 3 2 x 5 5 {\displaystyle y=\pm {\sqrt {C_{1}x^{2}+C_{2}x+C_{3}-{\frac {2x^{5}}{5}}}}} {\displaystyle y=\pm {\sqrt {C_{1}x^{2}+C_{2}x+C_{3}-{\frac {2x^{5}}{5}}}}}

See also

[edit ]

References

[edit ]
  1. ^ Wolfgang Walter (11 March 2013). Ordinary Differential Equations. Springer Science & Business Media. ISBN 978-1-4612-0601-9.
  2. ^ Vladimir A. Dobrushkin (16 December 2014). Applied Differential Equations: The Primary Course. CRC Press. ISBN 978-1-4987-2835-5.
  3. ^ Tenenbaum, Morris; Pollard, Harry (1963). "Solution of the Linear Differential Equation with Nonconstant Coefficients. Reduction of Order Method.". Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering and the Sciences . New York: Dover. pp. 248. ISBN 0-486-64940-7. {{cite book}}: ISBN / Date incompatibility (help)

Further reading

[edit ]
  • Boyce, William E.; DiPrima, Richard C. (1986). Elementary Differential Equations (4th ed.). New York: John Wiley & Sons, Inc. ISBN 0-471-07894-8
Classification
Operations
Attributes of variables
Relation to processes
Solutions
Existence/uniqueness
Solution topics
Solution methods
Examples
Mathematicians

AltStyle によって変換されたページ (->オリジナル) /