Jump to content
Wikipedia The Free Encyclopedia

Dickman function

From Wikipedia, the free encyclopedia
Mathematical function
The Dickman–de Bruijn function ρ(u) plotted on a logarithmic scale. The horizontal axis is the argument u, and the vertical axis is the value of the function. The graph nearly makes a downward line on the logarithmic scale, demonstrating that the logarithm of the function is quasilinear.

In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound. It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication.[1] It was later studied by the Dutch mathematician Nicolaas Govert de Bruijn.[2] [3]

Definition

[edit ]

The Dickman–de Bruijn function ρ ( u ) {\displaystyle \rho (u)} {\displaystyle \rho (u)} is a continuous function that satisfies the delay differential equation

u ρ ( u ) + ρ ( u 1 ) = 0 {\displaystyle u\rho '(u)+\rho (u-1)=0,円} {\displaystyle u\rho '(u)+\rho (u-1)=0,円}

with initial conditions ρ ( u ) = 1 {\displaystyle \rho (u)=1} {\displaystyle \rho (u)=1} for 0 ≤ u ≤ 1.

Properties

[edit ]

Dickman proved that, when a {\displaystyle a} {\displaystyle a} is fixed, we have

Ψ ( x , x 1 / a ) x ρ ( a ) {\displaystyle \Psi (x,x^{1/a})\sim x\rho (a),円} {\displaystyle \Psi (x,x^{1/a})\sim x\rho (a),円}

where Ψ ( x , y ) {\displaystyle \Psi (x,y)} {\displaystyle \Psi (x,y)} is the number of y-smooth (or y-friable) integers below x. Equivalently, the number of B {\displaystyle B} {\displaystyle B}-smooth numbers less than N {\displaystyle N} {\displaystyle N} is about Ψ ( N , B ) N ρ ( log N log B ) . {\displaystyle \Psi (N,B)\approx N\rho \left({\frac {\log N}{\log B}}\right).} {\displaystyle \Psi (N,B)\approx N\rho \left({\frac {\log N}{\log B}}\right).}

Ramaswami later gave a rigorous proof that for fixed a, Ψ ( x , x 1 / a ) {\displaystyle \Psi (x,x^{1/a})} {\displaystyle \Psi (x,x^{1/a})} was asymptotic to x ρ ( a ) {\displaystyle x\rho (a)} {\displaystyle x\rho (a)}, with the error bound

Ψ ( x , x 1 / a ) = x ρ ( a ) + O ( x / log x ) {\displaystyle \Psi (x,x^{1/a})=x\rho (a)+O(x/\log x)} {\displaystyle \Psi (x,x^{1/a})=x\rho (a)+O(x/\log x)}

in big O notation.[4]

Knuth gives a proof for a narrowed bound:

Ψ ( x , x 1 / a ) = x ρ ( a ) + ( 1 γ ) ρ ( a 1 ) ( x / log x ) + O ( x / ( log x ) 2 ) {\displaystyle \Psi (x,x^{1/a})=x\rho (a)+(1-\gamma )\rho (a-1)(x/\log x)+O(x/{(\log x)}^{2})} {\displaystyle \Psi (x,x^{1/a})=x\rho (a)+(1-\gamma )\rho (a-1)(x/\log x)+O(x/{(\log x)}^{2})}

where γ is Euler's constant.[5] : 98 

Applications

[edit ]
The Dickman–de Bruijn used to calculate the probability that the largest and 2nd largest factor of x is less than x^a

The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P–1 factoring and can be useful of its own right.[5]

It can be shown that[6]

Ψ ( x , y ) = x u O ( u ) {\displaystyle \Psi (x,y)=xu^{O(-u)}} {\displaystyle \Psi (x,y)=xu^{O(-u)}}

which is related to the estimate ρ ( u ) u u {\displaystyle \rho (u)\approx u^{-u}} {\displaystyle \rho (u)\approx u^{-u}} below.

The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.

Estimation

[edit ]

A first approximation might be ρ ( u ) u u . {\displaystyle \rho (u)\approx u^{-u}.,円} {\displaystyle \rho (u)\approx u^{-u}.,円} A better estimate is[7]

ρ ( u ) 1 ξ 2 π u exp ( u ξ + Ei ( ξ ) ) {\displaystyle \rho (u)\sim {\frac {1}{\xi {\sqrt {2\pi u}}}}\cdot \exp(-u\xi +\operatorname {Ei} (\xi ))} {\displaystyle \rho (u)\sim {\frac {1}{\xi {\sqrt {2\pi u}}}}\cdot \exp(-u\xi +\operatorname {Ei} (\xi ))}

where Ei is the exponential integral and ξ is the positive root of

e ξ 1 = u ξ . {\displaystyle e^{\xi }-1=u\xi .,円} {\displaystyle e^{\xi }-1=u\xi .,円}

A simple upper bound is ρ ( x ) 1 / x ! . {\displaystyle \rho (x)\leq 1/x!.} {\displaystyle \rho (x)\leq 1/x!.}

u {\displaystyle u} {\displaystyle u} ρ ( u ) {\displaystyle \rho (u)} {\displaystyle \rho (u)}
1 1
2 3.0685282×ばつ10−1
3 4.8608388×ばつ10−2
4 4.9109256×ばつ10−3
5 3.5472470×ばつ10−4
6 1.9649696×ばつ10−5
7 8.7456700×ばつ10−7
8 3.2320693×ばつ10−8
9 1.0162483×ばつ10−9
10 2.7701718×ばつ10−11

Computation

[edit ]

For each interval [n − 1, n] with n an integer, there is an analytic function ρ n {\displaystyle \rho _{n}} {\displaystyle \rho _{n}} such that ρ n ( u ) = ρ ( u ) {\displaystyle \rho _{n}(u)=\rho (u)} {\displaystyle \rho _{n}(u)=\rho (u)}. For 0 ≤ u ≤ 1, ρ ( u ) = 1 {\displaystyle \rho (u)=1} {\displaystyle \rho (u)=1}. For 1 ≤ u ≤ 2, ρ ( u ) = 1 log u {\displaystyle \rho (u)=1-\log u} {\displaystyle \rho (u)=1-\log u}. For 2 ≤ u ≤ 3,

ρ ( u ) = 1 ( 1 log ( u 1 ) ) log ( u ) + Li 2 ( 1 u ) + π 2 12 . {\displaystyle \rho (u)=1-(1-\log(u-1))\log(u)+\operatorname {Li} _{2}(1-u)+{\frac {\pi ^{2}}{12}}.} {\displaystyle \rho (u)=1-(1-\log(u-1))\log(u)+\operatorname {Li} _{2}(1-u)+{\frac {\pi ^{2}}{12}}.}

with Li2 the dilogarithm. Other ρ n {\displaystyle \rho _{n}} {\displaystyle \rho _{n}} can be calculated using infinite series.[8]

An alternate method is computing lower and upper bounds with the trapezoidal rule;[7] a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.[9] Values for u ≤ 7 can be usefully computed via numerical integration in ordinary double-precision floating-point.[5] : 99 

Extension

[edit ]

Friedlander defines a two-dimensional analog σ ( u , v ) {\displaystyle \sigma (u,v)} {\displaystyle \sigma (u,v)} of ρ ( u ) {\displaystyle \rho (u)} {\displaystyle \rho (u)}.[10] This function is used to estimate a function Ψ ( x , y , z ) {\displaystyle \Psi (x,y,z)} {\displaystyle \Psi (x,y,z)} similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then

Ψ ( x , x 1 / a , x 1 / b ) x σ ( b , a ) . {\displaystyle \Psi (x,x^{1/a},x^{1/b})\sim x\sigma (b,a).,円} {\displaystyle \Psi (x,x^{1/a},x^{1/b})\sim x\sigma (b,a).,円}

This class of numbers may be encountered in the two-stage variant of P-1 factoring. However, Kruppa's estimate of the probability of finding a factor by P-1 does not make use of this result.[5] : 100 

See also

[edit ]

References

[edit ]
  1. ^ Dickman, K. (1930). "On the frequency of numbers containing prime factors of a certain relative magnitude". Arkiv för Matematik, Astronomi och Fysik . 22A (10): 1–14. Bibcode:1930ArMAF..22A..10D. Dickman's paper is difficult to access; for alternatives, see nt.number theory - Reference request: Dickman, On the frequency of numbers containing prime factors.
  2. ^ de Bruijn, N. G. (1951). "On the number of positive integers ≤ x and free of prime factors > y" (PDF). Indagationes Mathematicae. 13: 50–60.
  3. ^ de Bruijn, N. G. (1966). "On the number of positive integers ≤ x and free of prime factors > y, II" (PDF). Indagationes Mathematicae. 28: 239–247.
  4. ^ Ramaswami, V. (1949). "On the number of positive integers less than x {\displaystyle x} {\displaystyle x} and free of prime divisors greater than xc" (PDF). Bulletin of the American Mathematical Society. 55 (12): 1122–1127. doi:10.1090/s0002-9904-1949-09337-0 . MR 0031958.
  5. ^ a b c d Kruppa, Alexander (2010). Speeding up Integer Multiplication and Factorization (PDF) (PhD thesis). Henri Poincaré University. – Work describes algorithms that Kruppa had contributed to GMP-ECM and other factoring programs. Some chapters have been published elsewhere.
  6. ^ Hildebrand, A.; Tenenbaum, G. (1993). "Integers without large prime factors" (PDF). Journal de théorie des nombres de Bordeaux . 5 (2): 411–484. doi:10.5802/jtnb.101 .
  7. ^ a b van de Lune, J.; Wattel, E. (1969). "On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory". Mathematics of Computation . 23 (106): 417–421. doi:10.1090/S0025-5718-1969-0247789-3 .
  8. ^ Bach, Eric; Peralta, René (1996). "Asymptotic Semismoothness Probabilities" (PDF). Mathematics of Computation. 65 (216): 1701–1715. Bibcode:1996MaCom..65.1701B. doi:10.1090/S0025-5718-96-00775-2 .
  9. ^ Marsaglia, George; Zaman, Arif; Marsaglia, John C. W. (1989). "Numerical Solution of Some Classical Differential-Difference Equations". Mathematics of Computation. 53 (187): 191–201. doi:10.1090/S0025-5718-1989-0969490-3 .
  10. ^ Friedlander, John B. (1976). "Integers free from large and small primes". Proc. London Math. Soc. 33 (3): 565–576. doi:10.1112/plms/s3-33.3.565.

Further reading

[edit ]

AltStyle によって変換されたページ (->オリジナル) /