Jump to content
Wikipedia The Free Encyclopedia

Cross fluid

From Wikipedia, the free encyclopedia
Generalized Newtonian fluid

In fluid dynamics, a Cross fluid is a type of generalized Newtonian fluid whose viscosity depends upon shear rate according to the Cross power law equation:

μ e f f ( γ ˙ ) = μ + μ 0 μ 1 + ( m γ ˙ ) n {\displaystyle \mu _{\mathrm {eff} }({\dot {\gamma }})=\mu _{\infty }+{\frac {\mu _{0}-\mu _{\infty }}{1+(m{\dot {\gamma }})^{n}}}} {\displaystyle \mu _{\mathrm {eff} }({\dot {\gamma }})=\mu _{\infty }+{\frac {\mu _{0}-\mu _{\infty }}{1+(m{\dot {\gamma }})^{n}}}}

where μ e f f ( γ ˙ ) {\displaystyle \mu _{\mathrm {eff} }({\dot {\gamma }})} {\displaystyle \mu _{\mathrm {eff} }({\dot {\gamma }})} is viscosity as a function of shear rate, μ {\displaystyle \mu _{\infty }} {\displaystyle \mu _{\infty }} is the infinite-shear-rate viscosity, μ 0 {\displaystyle \mu _{0}} {\displaystyle \mu _{0}} is the zero-shear-rate viscosity, m {\displaystyle m} {\displaystyle m} is the time constant, and n {\displaystyle n} {\displaystyle n} is the shear-thinning index.

The zero-shear viscosity μ 0 {\displaystyle \mu _{0}} {\displaystyle \mu _{0}} is approached at very low shear rates, while the infinite shear viscosity μ {\displaystyle \mu _{\infty }} {\displaystyle \mu _{\infty }} is approached at very high shear rates.[1]

When μ 0 {\displaystyle \mu _{0}} {\displaystyle \mu _{0}} > μ {\displaystyle \mu _{\infty }} {\displaystyle \mu _{\infty }}, the fluid exhibits shear thinning (pseudoplastic) behavior where viscosity decreases with increasing shear rate; when μ 0 {\displaystyle \mu _{0}} {\displaystyle \mu _{0}} < μ {\displaystyle \mu _{\infty }} {\displaystyle \mu _{\infty }}, the fluid displays shear thickening (dilatant) behavior where viscosity increases with shear rate.

It is named after Malcolm M. Cross who proposed this model in 1965.[2] [3]

See also

[edit ]

References

[edit ]
  1. ^ Cunningham, Neil. "Making Use Of Models: The Cross Model". www.rheologyschool.com. Retrieved 2018年02月28日.
  2. ^ Cross, Malcolm M. (1965年06月01日). "Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems" . Journal of Colloid Science. 20 (5): 417–437. doi:10.1016/0095-8522(65)90022-X. ISSN 0095-8522.
  3. ^ Galindo-Rosales, F. J.; Rubio-Hernández, F. J.; Sevilla, A.; Ewoldt, R. H. (2011年12月01日). "How Dr. Malcom M. Cross may have tackled the development of "An apparent viscosity function for shear thickening fluids"" . Journal of Non-Newtonian Fluid Mechanics. 166 (23): 1421–1424. doi:10.1016/j.jnnfm.201108008. ISSN 0377-0257.
  • Kennedy, P. K., Flow Analysis of Injection Molds. New York. Hanser. ISBN 1-56990-181-3
Stub icon

This fluid dynamics–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /