Converse nonimplication
(the red area is true)
In logic, converse nonimplication[1] is a logical connective which is the negation of converse implication (equivalently, the negation of the converse of implication).
Definition
[edit ]Converse nonimplication is notated {\displaystyle P\nleftarrow Q}, or {\displaystyle P\not \subset Q}, and is logically equivalent to {\displaystyle \neg (P\leftarrow Q)} and {\displaystyle \neg P\wedge Q}.
Truth table
[edit ]The truth table of {\displaystyle A\nleftarrow B}.[2]
| {\displaystyle A} | {\displaystyle B} | {\displaystyle A\nleftarrow B} |
|---|---|---|
| F | F | F |
| F | T | T |
| T | F | F |
| T | T | F |
Notation
[edit ]Converse nonimplication is notated {\textstyle p\nleftarrow q}, which is the left arrow from converse implication ({\textstyle \leftarrow }), negated with a stroke (/).
Alternatives include
- {\textstyle p\not \subset q}, which combines converse implication's {\displaystyle \subset }, negated with a stroke (/).
- {\textstyle p{\tilde {\leftarrow }}q}, which combines converse implication's left arrow ({\textstyle \leftarrow }) with negation's tilde ({\textstyle \sim }).
- Mpq, in Bocheński notation
Properties
[edit ]falsehood-preserving: The interpretation under which all variables are assigned a truth value of 'false' produces a truth value of 'false' as a result of converse nonimplication
Natural language
[edit ]Grammatical
[edit ]Example,
If it rains (P) then I get wet (Q), just because I am wet (Q) does not mean it is raining, in reality I went to a pool party with the co-ed staff, in my clothes (~P) and that is why I am facilitating this lecture in this state (Q).
Rhetorical
[edit ]Q does not imply P.
Colloquial
[edit ]Not P, but Q.
Boolean algebra
[edit ]Converse Nonimplication in a general Boolean algebra is defined as {\textstyle q\nleftarrow p=q'p}.
Example of a 2-element Boolean algebra: the 2 elements {0,1} with 0 as zero and 1 as unity element, operators {\textstyle \sim } as complement operator, {\textstyle \vee } as join operator and {\textstyle \wedge } as meet operator, build the Boolean algebra of propositional logic.
|
and |
|
and |
|
then {\displaystyle \scriptstyle {y\nleftarrow x}\!} means |
| |||||||||||||||||||||||||||||||||||||||
| (Negation) | (Inclusive or) | (And) | (Converse nonimplication) |
Example of a 4-element Boolean algebra: the 4 divisors {1,2,3,6} of 6 with 1 as zero and 6 as unity element, operators {\displaystyle \scriptstyle {^{c}}\!} (co-divisor of 6) as complement operator, {\displaystyle \scriptstyle {_{\vee }}\!} (least common multiple) as join operator and {\displaystyle \scriptstyle {_{\wedge }}\!} (greatest common divisor) as meet operator, build a Boolean algebra.
|
and |
|
and |
|
then {\displaystyle \scriptstyle {y\nleftarrow x}\!} means |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (Co-divisor 6) | (Least common multiple) | (Greatest common divisor) | (x's greatest divisor coprime with y) |
Properties
[edit ]Non-associative
[edit ]{\displaystyle r\nleftarrow (q\nleftarrow p)=(r\nleftarrow q)\nleftarrow p} if and only if {\displaystyle rp=0} #s5 (In a two-element Boolean algebra the latter condition is reduced to {\displaystyle r=0} or {\displaystyle p=0}). Hence in a nontrivial Boolean algebra Converse Nonimplication is nonassociative. {\displaystyle {\begin{aligned}(r\nleftarrow q)\nleftarrow p&=r'q\nleftarrow p&{\text{(by definition)}}\\&=(r'q)'p&{\text{(by definition)}}\\&=(r+q')p&{\text{(De Morgan's laws)}}\\&=(r+r'q')p&{\text{(Absorption law)}}\\&=rp+r'q'p\\&=rp+r'(q\nleftarrow p)&{\text{(by definition)}}\\&=rp+r\nleftarrow (q\nleftarrow p)&{\text{(by definition)}}\\\end{aligned}}}
Clearly, it is associative if and only if {\displaystyle rp=0}.
Non-commutative
[edit ]- {\displaystyle q\nleftarrow p=p\nleftarrow q} if and only if {\displaystyle q=p} #s6. Hence Converse Nonimplication is noncommutative.
Neutral and absorbing elements
[edit ]- 0 is a left neutral element ({\displaystyle 0\nleftarrow p=p}) and a right absorbing element ({\displaystyle {p\nleftarrow 0=0}}).
- {\displaystyle 1\nleftarrow p=0}, {\displaystyle p\nleftarrow 1=p'}, and {\displaystyle p\nleftarrow p=0}.
- Implication {\displaystyle q\rightarrow p} is the dual of converse nonimplication {\displaystyle q\nleftarrow p} #s7.
| Converse Nonimplication is noncommutative | ||||
|---|---|---|---|---|
| Step | Make use of | Resulting in | ||
| s.1 | Definition | {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=q'p,円}\!} | ||
| s.2 | Definition | {\displaystyle \scriptstyle {p{\tilde {\leftarrow }}q=p'q,円}\!} | ||
| s.3 | s.1 s.2 | {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=p{\tilde {\leftarrow }}q\ \Leftrightarrow \ q'p=qp',円}\!} | ||
| s.4 | {\displaystyle \scriptstyle {q,円}\!} | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {q.1,円}\!} | |
| s.5 | s.4.right - expand Unit element | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {q.(p+p'),円}\!} | |
| s.6 | s.5.right - evaluate expression | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {qp+qp',円}\!} | |
| s.7 | s.4.left = s.6.right | {\displaystyle \scriptstyle {q=qp+qp',円}\!} | ||
| s.8 | {\displaystyle \scriptstyle {q'p=qp',円}\!} | {\displaystyle \scriptstyle {\Rightarrow ,円}\!} | {\displaystyle \scriptstyle {qp+qp'=qp+q'p,円}\!} | |
| s.9 | s.8 - regroup common factors | {\displaystyle \scriptstyle {\Rightarrow ,円}\!} | {\displaystyle \scriptstyle {q.(p+p')=(q+q').p,円}\!} | |
| s.10 | s.9 - join of complements equals unity | {\displaystyle \scriptstyle {\Rightarrow ,円}\!} | {\displaystyle \scriptstyle {q.1=1.p,円}\!} | |
| s.11 | s.10.right - evaluate expression | {\displaystyle \scriptstyle {\Rightarrow ,円}\!} | {\displaystyle \scriptstyle {q=p,円}\!} | |
| s.12 | s.8 s.11 | {\displaystyle \scriptstyle {q'p=qp'\ \Rightarrow \ q=p,円}\!} | ||
| s.13 | {\displaystyle \scriptstyle {q=p\ \Rightarrow \ q'p=qp',円}\!} | |||
| s.14 | s.12 s.13 | {\displaystyle \scriptstyle {q=p\ \Leftrightarrow \ q'p=qp',円}\!} | ||
| s.15 | s.3 s.14 | {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=p{\tilde {\leftarrow }}q\ \Leftrightarrow \ q=p,円}\!} | ||
| Implication is the dual of Converse Nonimplication | ||||
|---|---|---|---|---|
| Step | Make use of | Resulting in | ||
| s.1 | Definition | {\displaystyle \scriptstyle {\operatorname {dual} (q{\tilde {\leftarrow }}p),円}\!} | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {\operatorname {dual} (q'p),円}\!} |
| s.2 | s.1.right - .'s dual is + | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {q'+p,円}\!} | |
| s.3 | s.2.right - Involution complement | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {(q'+p)'',円}\!} | |
| s.4 | s.3.right - De Morgan's laws applied once | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {(qp')',円}\!} | |
| s.5 | s.4.right - Commutative law | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {(p'q)',円}\!} | |
| s.6 | s.5.right | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {(p{\tilde {\leftarrow }}q)',円}\!} | |
| s.7 | s.6.right | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {p\leftarrow q,円}\!} | |
| s.8 | s.7.right | {\displaystyle \scriptstyle {=,円}\!} | {\displaystyle \scriptstyle {q\rightarrow p,円}\!} | |
| s.9 | s.1.left = s.8.right | {\displaystyle \scriptstyle {\operatorname {dual} (q{\tilde {\leftarrow }}p)=q\rightarrow p,円}\!} | ||
Computer science
[edit ]An example for converse nonimplication in computer science can be found when performing a right outer join on a set of tables from a database, if records not matching the join-condition from the "left" table are being excluded.[3]
References
[edit ]- ^ Lehtonen, Eero, and Poikonen, J.H.
- ^ Knuth 2011, p. 49
- ^ "A Visual Explanation of SQL Joins". 11 October 2007. Archived from the original on 15 February 2014. Retrieved 24 March 2013.
- Knuth, Donald E. (2011). The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1 (1st ed.). Addison-Wesley Professional. ISBN 978-0-201-03804-0.
External links
[edit ]- Media related to Converse nonimplication at Wikimedia Commons