Jump to content
Wikipedia The Free Encyclopedia

Control variates

From Wikipedia, the free encyclopedia
Technique for increasing the precision of estimates in Monte Carlo experiments

The control variates method is a variance reduction technique used in Monte Carlo methods. It exploits information about the errors in estimates of known quantities to reduce the error of an estimate of an unknown quantity.[1] [2] [3]

Underlying principle

[edit ]

Let the unknown parameter of interest be μ {\displaystyle \mu } {\displaystyle \mu }, and assume we have a statistic m {\displaystyle m} {\displaystyle m} such that the expected value of m is μ: E [ m ] = μ {\displaystyle \mathbb {E} \left[m\right]=\mu } {\displaystyle \mathbb {E} \left[m\right]=\mu }, i.e. m is an unbiased estimator for μ. Suppose we calculate another statistic t {\displaystyle t} {\displaystyle t} such that E [ t ] = τ {\displaystyle \mathbb {E} \left[t\right]=\tau } {\displaystyle \mathbb {E} \left[t\right]=\tau } is a known value. Then

m = m + c ( t τ ) {\displaystyle m^{\star }=m+c\left(t-\tau \right),円} {\displaystyle m^{\star }=m+c\left(t-\tau \right),円}

is also an unbiased estimator for μ {\displaystyle \mu } {\displaystyle \mu } for any choice of the coefficient c {\displaystyle c} {\displaystyle c}. The variance of the resulting estimator m {\displaystyle m^{\star }} {\displaystyle m^{\star }} is

Var ( m ) = Var ( m ) + c 2 Var ( t ) + 2 c Cov ( m , t ) . {\displaystyle {\textrm {Var}}\left(m^{\star }\right)={\textrm {Var}}\left(m\right)+c^{2},円{\textrm {Var}}\left(t\right)+2c,円{\textrm {Cov}}\left(m,t\right).} {\displaystyle {\textrm {Var}}\left(m^{\star }\right)={\textrm {Var}}\left(m\right)+c^{2},円{\textrm {Var}}\left(t\right)+2c,円{\textrm {Cov}}\left(m,t\right).}

By differentiating the above expression with respect to c {\displaystyle c} {\displaystyle c}, it can be shown that choosing the optimal coefficient

c = Cov ( m , t ) Var ( t ) {\displaystyle c^{\star }=-{\frac {{\textrm {Cov}}\left(m,t\right)}{{\textrm {Var}}\left(t\right)}}} {\displaystyle c^{\star }=-{\frac {{\textrm {Cov}}\left(m,t\right)}{{\textrm {Var}}\left(t\right)}}}

minimizes the variance of m {\displaystyle m^{\star }} {\displaystyle m^{\star }}. (Note that this coefficient is the same as the coefficient obtained from a linear regression.) With this choice,

Var ( m ) = Var ( m ) [ Cov ( m , t ) ] 2 Var ( t ) = ( 1 ρ m , t 2 ) Var ( m ) {\displaystyle {\begin{aligned}{\textrm {Var}}\left(m^{\star }\right)&={\textrm {Var}}\left(m\right)-{\frac {\left[{\textrm {Cov}}\left(m,t\right)\right]^{2}}{{\textrm {Var}}\left(t\right)}}\\&=\left(1-\rho _{m,t}^{2}\right){\textrm {Var}}\left(m\right)\end{aligned}}} {\displaystyle {\begin{aligned}{\textrm {Var}}\left(m^{\star }\right)&={\textrm {Var}}\left(m\right)-{\frac {\left[{\textrm {Cov}}\left(m,t\right)\right]^{2}}{{\textrm {Var}}\left(t\right)}}\\&=\left(1-\rho _{m,t}^{2}\right){\textrm {Var}}\left(m\right)\end{aligned}}}

where

ρ m , t = Corr ( m , t ) {\displaystyle \rho _{m,t}={\textrm {Corr}}\left(m,t\right),円} {\displaystyle \rho _{m,t}={\textrm {Corr}}\left(m,t\right),円}

is the correlation coefficient of m {\displaystyle m} {\displaystyle m} and t {\displaystyle t} {\displaystyle t}. The greater the value of | ρ m , t | {\displaystyle \vert \rho _{m,t}\vert } {\displaystyle \vert \rho _{m,t}\vert }, the greater the variance reduction achieved.

In the case that Cov ( m , t ) {\displaystyle {\textrm {Cov}}\left(m,t\right)} {\displaystyle {\textrm {Cov}}\left(m,t\right)}, Var ( t ) {\displaystyle {\textrm {Var}}\left(t\right)} {\displaystyle {\textrm {Var}}\left(t\right)}, and/or ρ m , t {\displaystyle \rho _{m,t}\;} {\displaystyle \rho _{m,t}\;} are unknown, they can be estimated across the Monte Carlo replicates. This is equivalent to solving a certain least squares system; therefore this technique is also known as regression sampling.

When the expectation of the control variable, E [ t ] = τ {\displaystyle \mathbb {E} \left[t\right]=\tau } {\displaystyle \mathbb {E} \left[t\right]=\tau }, is not known analytically, it is still possible to increase the precision in estimating μ {\displaystyle \mu } {\displaystyle \mu } (for a given fixed simulation budget), provided that the two conditions are met: 1) evaluating t {\displaystyle t} {\displaystyle t} is significantly cheaper than computing m {\displaystyle m} {\displaystyle m}; 2) the magnitude of the correlation coefficient | ρ m , t | {\displaystyle |\rho _{m,t}|} {\displaystyle |\rho _{m,t}|} is close to unity. [3]

Example

[edit ]

We would like to estimate

I = 0 1 1 1 + x d x {\displaystyle I=\int _{0}^{1}{\frac {1}{1+x}},円\mathrm {d} x} {\displaystyle I=\int _{0}^{1}{\frac {1}{1+x}},円\mathrm {d} x}

using Monte Carlo integration. This integral is the expected value of f ( U ) {\displaystyle f(U)} {\displaystyle f(U)}, where

f ( U ) = 1 1 + U {\displaystyle f(U)={\frac {1}{1+U}}} {\displaystyle f(U)={\frac {1}{1+U}}}

and U follows a uniform distribution [0, 1]. Using a sample of size n denote the points in the sample as u 1 , , u n {\displaystyle u_{1},\cdots ,u_{n}} {\displaystyle u_{1},\cdots ,u_{n}}. Then the estimate is given by

I 1 n i f ( u i ) . {\displaystyle I\approx {\frac {1}{n}}\sum _{i}f(u_{i}).} {\displaystyle I\approx {\frac {1}{n}}\sum _{i}f(u_{i}).}

Now we introduce g ( U ) = 1 + U {\displaystyle g(U)=1+U} {\displaystyle g(U)=1+U} as a control variate with a known expected value E [ g ( U ) ] = 0 1 ( 1 + x ) d x = 3 2 {\displaystyle \mathbb {E} \left[g\left(U\right)\right]=\int _{0}^{1}(1+x),円\mathrm {d} x={\tfrac {3}{2}}} {\displaystyle \mathbb {E} \left[g\left(U\right)\right]=\int _{0}^{1}(1+x),円\mathrm {d} x={\tfrac {3}{2}}} and combine the two into a new estimate

I 1 n i f ( u i ) + c ( 1 n i g ( u i ) 3 / 2 ) . {\displaystyle I\approx {\frac {1}{n}}\sum _{i}f(u_{i})+c\left({\frac {1}{n}}\sum _{i}g(u_{i})-3/2\right).} {\displaystyle I\approx {\frac {1}{n}}\sum _{i}f(u_{i})+c\left({\frac {1}{n}}\sum _{i}g(u_{i})-3/2\right).}

Using n = 1500 {\displaystyle n=1500} {\displaystyle n=1500} realizations and an estimated optimal coefficient c 0.4773 {\displaystyle c^{\star }\approx 0.4773} {\displaystyle c^{\star }\approx 0.4773} we obtain the following results

Estimate Variance
Classical estimate 0.69475 0.01947
Control variates 0.69295 0.00060

The variance was significantly reduced after using the control variates technique. (The exact result is I = ln 2 0.69314718 {\displaystyle I=\ln 2\approx 0.69314718} {\displaystyle I=\ln 2\approx 0.69314718}.)

See also

[edit ]
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Control variates" – news · newspapers · books · scholar · JSTOR
(August 2011) (Learn how and when to remove this message)

Notes

[edit ]
  1. ^ Lemieux, C. (2017). "Control Variates". Wiley StatsRef: Statistics Reference Online. pp. 1–8. doi:10.1002/9781118445112.stat07947. ISBN 9781118445112.
  2. ^ Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. New York: Springer. ISBN 0-387-00451-3 (p. 185)
  3. ^ a b Botev, Z.; Ridder, A. (2017). "Variance Reduction". Wiley StatsRef: Statistics Reference Online. pp. 1–6. doi:10.1002/9781118445112.stat07975. hdl:1959.4/unsworks_50616 . ISBN 9781118445112.

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /