Jump to content
Wikipedia The Free Encyclopedia

Compression theorem

From Wikipedia, the free encyclopedia
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations . Please help improve this article by introducing more precise citations. (November 2024) (Learn how and when to remove this message)

In computational complexity theory, the compression theorem is an important theorem about the complexity of computable functions.

The theorem states that there exists no largest complexity class, with computable boundary, which contains all computable functions.

Compression theorem

[edit ]

Given a Gödel numbering φ {\displaystyle \varphi } {\displaystyle \varphi } of the computable functions and a Blum complexity measure Φ {\displaystyle \Phi } {\displaystyle \Phi } where a complexity class for a boundary function f {\displaystyle f} {\displaystyle f} is defined as

C ( f ) := { φ i R ( 1 ) | ( x ) Φ i ( x ) f ( x ) } . {\displaystyle \mathrm {C} (f):=\{\varphi _{i}\in \mathbf {R} ^{(1)}|(\forall ^{\infty }x),円\Phi _{i}(x)\leq f(x)\}.} {\displaystyle \mathrm {C} (f):=\{\varphi _{i}\in \mathbf {R} ^{(1)}|(\forall ^{\infty }x),円\Phi _{i}(x)\leq f(x)\}.}

Then there exists a total computable function f {\displaystyle f} {\displaystyle f} so that for all i {\displaystyle i} {\displaystyle i}

D o m ( φ i ) = D o m ( φ f ( i ) ) {\displaystyle \mathrm {Dom} (\varphi _{i})=\mathrm {Dom} (\varphi _{f(i)})} {\displaystyle \mathrm {Dom} (\varphi _{i})=\mathrm {Dom} (\varphi _{f(i)})}

and

C ( φ i ) C ( φ f ( i ) ) . {\displaystyle \mathrm {C} (\varphi _{i})\subsetneq \mathrm {C} (\varphi _{f(i)}).} {\displaystyle \mathrm {C} (\varphi _{i})\subsetneq \mathrm {C} (\varphi _{f(i)}).}

References

[edit ]
P ≟ NP 

This theoretical computer science–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /