Jump to content
Wikipedia The Free Encyclopedia

Complete orthogonal decomposition

From Wikipedia, the free encyclopedia

In linear algebra, the complete orthogonal decomposition is a matrix decomposition.[1] [2] It is similar to the singular value decomposition, but typically somewhat[3] cheaper to compute and in particular much cheaper and easier to update when the original matrix is slightly altered.[1]

Specifically, the complete orthogonal decomposition factorizes an arbitrary complex matrix A {\displaystyle A} {\displaystyle A} into a product of three matrices, A = U T V {\displaystyle A=UTV^{*}} {\displaystyle A=UTV^{*}}, where U {\displaystyle U} {\displaystyle U} and V {\displaystyle V^{*}} {\displaystyle V^{*}} are unitary matrices and T {\displaystyle T} {\displaystyle T} is a triangular matrix. For a matrix A {\displaystyle A} {\displaystyle A} of rank r {\displaystyle r} {\displaystyle r}, the triangular matrix T {\displaystyle T} {\displaystyle T} can be chosen such that only its top-left r × r {\displaystyle r\times r} {\displaystyle r\times r} block is nonzero, making the decomposition rank-revealing.

For a matrix of size m × n {\displaystyle m\times n} {\displaystyle m\times n}, assuming m n {\displaystyle m\geq n} {\displaystyle m\geq n}, the complete orthogonal decomposition requires O ( m n 2 ) {\displaystyle O(mn^{2})} {\displaystyle O(mn^{2})} floating point operations and O ( m 2 ) {\displaystyle O(m^{2})} {\displaystyle O(m^{2})} auxiliary memory to compute, similar to other rank-revealing decompositions.[1] Crucially however, if a row/column is added or removed, its decomposition can be updated in O ( m n ) {\displaystyle O(mn)} {\displaystyle O(mn)} operations.[1]

Because of its form, A = U T V {\displaystyle A=UTV^{*}} {\displaystyle A=UTV^{*}}, the decomposition is also known as UTV decomposition.[4] Depending on whether a left-triangular or right-triangular matrix is used in place of T {\displaystyle T} {\displaystyle T}, it is also referred to as ULV decomposition[3] or URV decomposition,[5] respectively.

Construction

[edit ]

The UTV decomposition is usually[6] [7] computed by means of a pair of QR decompositions: one QR decomposition is applied to the matrix from the left, which yields U {\displaystyle U} {\displaystyle U}, another applied from the right, which yields V {\displaystyle V^{*}} {\displaystyle V^{*}}, which "sandwiches" triangular matrix T {\displaystyle T} {\displaystyle T} in the middle.

Let A {\displaystyle A} {\displaystyle A} be a m × n {\displaystyle m\times n} {\displaystyle m\times n} matrix of rank r {\displaystyle r} {\displaystyle r}. One first performs a QR decomposition with column pivoting:

A Π = U [ R 11 R 12 0 0 ] {\displaystyle A\Pi =U{\begin{bmatrix}R_{11}&R_{12}\0円&0\end{bmatrix}}} {\displaystyle A\Pi =U{\begin{bmatrix}R_{11}&R_{12}\0円&0\end{bmatrix}}},

where Π {\displaystyle \Pi } {\displaystyle \Pi } is a n × n {\displaystyle n\times n} {\displaystyle n\times n} permutation matrix, U {\displaystyle U} {\displaystyle U} is a m × m {\displaystyle m\times m} {\displaystyle m\times m} unitary matrix, R 11 {\displaystyle R_{11}} {\displaystyle R_{11}} is a r × r {\displaystyle r\times r} {\displaystyle r\times r} upper triangular matrix and R 12 {\displaystyle R_{12}} {\displaystyle R_{12}} is a r × ( n r ) {\displaystyle r\times (n-r)} {\displaystyle r\times (n-r)} matrix. One then performs another QR decomposition on the adjoint of R {\displaystyle R} {\displaystyle R}:

[ R 11 R 12 ] = V [ T 0 ] {\displaystyle {\begin{bmatrix}R_{11}^{*}\\R_{12}^{*}\end{bmatrix}}=V'{\begin{bmatrix}T^{*}\0円\end{bmatrix}}} {\displaystyle {\begin{bmatrix}R_{11}^{*}\\R_{12}^{*}\end{bmatrix}}=V'{\begin{bmatrix}T^{*}\0円\end{bmatrix}}},

where V {\displaystyle V'} {\displaystyle V'} is a n × n {\displaystyle n\times n} {\displaystyle n\times n} unitary matrix and T {\displaystyle T} {\displaystyle T} is an r × r {\displaystyle r\times r} {\displaystyle r\times r} lower (left) triangular matrix. Setting V = Π V {\displaystyle V=\Pi V'} {\displaystyle V=\Pi V'} yields the complete orthogonal (UTV) decomposition:[1]

A = U [ T 0 0 0 ] V {\displaystyle A=U{\begin{bmatrix}T&0\0円&0\end{bmatrix}}V^{*}} {\displaystyle A=U{\begin{bmatrix}T&0\0円&0\end{bmatrix}}V^{*}}.

Since any diagonal matrix is by construction triangular, the singular value decomposition, A = U S V {\displaystyle A=USV^{*}} {\displaystyle A=USV^{*}}, where S 11 S 22 0 {\displaystyle S_{11}\geq S_{22}\geq \ldots \geq 0} {\displaystyle S_{11}\geq S_{22}\geq \ldots \geq 0}, is a special case of the UTV decomposition. Computing the SVD is slightly more expensive than the UTV decomposition,[3] but has a stronger rank-revealing property.

See also

[edit ]

References

[edit ]
  1. ^ a b c d e Golub, Gene; van Loan, Charles F. (15 October 1996). Matrix Computations (Third ed.). Johns Hopkins University Press. ISBN 0-8018-5414-8.
  2. ^ Björck, Åke (December 1996). Numerical methods for least squares problems. SIAM. ISBN 0-89871-360-9.
  3. ^ a b c Chandrasekaran, S.; Gu, M.; Pals, T. (January 2006). "A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations". SIAM Journal on Matrix Analysis and Applications. 28 (3): 603–622. doi:10.1137/S0895479803436652.
  4. ^ Fierro, Ricardo D.; Hansen, Per Christian; Hansen, Peter Søren Kirk (1999). "UTV Tools: Matlab templates for rank-revealing UTV decompositions" (PDF). Numerical Algorithms. 20 (2/3): 165–194. doi:10.1023/A:1019112103049. S2CID 19861950.
  5. ^ Adams, G.; Griffin, M.F.; Stewart, G.W. (1991). "Direction-of-arrival estimation using the rank-revealing URV decomposition". [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. Proc. Of IEEE Internat. Conf. On Acoustics, Speech, and Signal Processing. pp. 1385-1388 vol.2. doi:10.1109/icassp.1991.150681. hdl:1903/555. ISBN 0-7803-0003-3. S2CID 9201732.
  6. ^ "LAPACK – Complete Orthogonal Factorization". netlib.org.
  7. ^ "Eigen::CompleteOrthogonalDecomposition". Eigen 3.3 reference documentation. Retrieved 2023年08月07日.

AltStyle によって変換されたページ (->オリジナル) /