Jump to content
Wikipedia The Free Encyclopedia

Coframe

From Wikipedia, the free encyclopedia

In mathematics, a coframe or coframe field on a smooth manifold M {\displaystyle M} {\displaystyle M} is a system of one-forms or covectors which form a basis of the cotangent bundle at every point.[1] In the exterior algebra of M {\displaystyle M} {\displaystyle M}, one has a natural map from v k : k T M k T M {\displaystyle v_{k}:\bigoplus ^{k}T^{*}M\to \bigwedge ^{k}T^{*}M} {\displaystyle v_{k}:\bigoplus ^{k}T^{*}M\to \bigwedge ^{k}T^{*}M}, given by v k : ( ρ 1 , , ρ k ) ρ 1 ρ k {\displaystyle v_{k}:(\rho _{1},\ldots ,\rho _{k})\mapsto \rho _{1}\wedge \ldots \wedge \rho _{k}} {\displaystyle v_{k}:(\rho _{1},\ldots ,\rho _{k})\mapsto \rho _{1}\wedge \ldots \wedge \rho _{k}}. If M {\displaystyle M} {\displaystyle M} is n {\displaystyle n} {\displaystyle n} dimensional, a coframe is given by a section σ {\displaystyle \sigma } {\displaystyle \sigma } of n T M {\displaystyle \bigoplus ^{n}T^{*}M} {\displaystyle \bigoplus ^{n}T^{*}M} such that v n σ 0 {\displaystyle v_{n}\circ \sigma \neq 0} {\displaystyle v_{n}\circ \sigma \neq 0}. The inverse image under v n {\displaystyle v_{n}} {\displaystyle v_{n}} of the complement of the zero section of n T M {\displaystyle \bigwedge ^{n}T^{*}M} {\displaystyle \bigwedge ^{n}T^{*}M} forms a G L ( n ) {\displaystyle GL(n)} {\displaystyle GL(n)} principal bundle over M {\displaystyle M} {\displaystyle M}, which is called the coframe bundle.

References

[edit ]

See also

[edit ]


Stub icon

This differential geometry-related article is a stub. You can help Wikipedia by expanding it.

  1. ^ "Structure coefficients of a coframe". Mathematics Stack Exchange. Retrieved 2024年01月19日.

AltStyle によって変換されたページ (->オリジナル) /