Jump to content
Wikipedia The Free Encyclopedia

Closed convex function

From Wikipedia, the free encyclopedia
Terms in Maths

In mathematics, a function f : R n R {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } is said to be closed if for each α R {\displaystyle \alpha \in \mathbb {R} } {\displaystyle \alpha \in \mathbb {R} }, the sublevel set { x dom f | f ( x ) α } {\displaystyle \{x\in {\mbox{dom}}f\vert f(x)\leq \alpha \}} {\displaystyle \{x\in {\mbox{dom}}f\vert f(x)\leq \alpha \}} is a closed set.

Equivalently, if the epigraph defined by epi f = { ( x , t ) R n + 1 | x dom f , f ( x ) t } {\displaystyle {\mbox{epi}}f=\{(x,t)\in \mathbb {R} ^{n+1}\vert x\in {\mbox{dom}}f,\;f(x)\leq t\}} {\displaystyle {\mbox{epi}}f=\{(x,t)\in \mathbb {R} ^{n+1}\vert x\in {\mbox{dom}}f,\;f(x)\leq t\}} is closed, then the function f {\displaystyle f} {\displaystyle f} is closed.

This definition is valid for any function, but most used for convex functions. A proper convex function is closed if and only if it is lower semi-continuous.[1]

Properties

[edit ]
  • If f : R n R {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } is a continuous function and dom f {\displaystyle {\mbox{dom}}f} {\displaystyle {\mbox{dom}}f} is closed, then f {\displaystyle f} {\displaystyle f} is closed.
  • If f : R n R {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } is a continuous function and dom f {\displaystyle {\mbox{dom}}f} {\displaystyle {\mbox{dom}}f} is open, then f {\displaystyle f} {\displaystyle f} is closed if and only if it converges to {\displaystyle \infty } {\displaystyle \infty } along every sequence converging to a boundary point of dom f {\displaystyle {\mbox{dom}}f} {\displaystyle {\mbox{dom}}f}.[2]
  • A closed proper convex function f is the pointwise supremum of the collection of all affine functions h such that hf (called the affine minorants of f).

References

[edit ]
  1. ^ Convex Optimization Theory. Athena Scientific. 2009. pp. 10, 11. ISBN 978-1886529311.
  2. ^ Boyd, Stephen; Vandenberghe, Lieven (2004). Convex optimization (PDF). New York: Cambridge. pp. 639–640. ISBN 978-0521833783.
Basic concepts
Topics (list)
Maps
Main results (list)
Sets
Series
Duality
Applications and related
Stub icon

This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /