Chern–Simons form
In mathematics, the Chern–Simons forms are certain secondary characteristic classes.[1] The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.[2] [3]
Definition
[edit ]Given a manifold and a Lie algebra valued 1-form {\displaystyle \mathbf {A} } over it, we can define a family of p-forms:[4]
In one dimension, the Chern–Simons 1-form is given by
- {\displaystyle \operatorname {Tr} [\mathbf {A} ].}
In three dimensions, the Chern–Simons 3-form is given by
- {\displaystyle \operatorname {Tr} \left[\mathbf {F} \wedge \mathbf {A} -{\frac {1}{3}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]=\operatorname {Tr} \left[d\mathbf {A} \wedge \mathbf {A} +{\frac {2}{3}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right].}
In five dimensions, the Chern–Simons 5-form is given by
- {\displaystyle {\begin{aligned}&\operatorname {Tr} \left[\mathbf {F} \wedge \mathbf {F} \wedge \mathbf {A} -{\frac {1}{2}}\mathbf {F} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} +{\frac {1}{10}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]\\[6pt]={}&\operatorname {Tr} \left[d\mathbf {A} \wedge d\mathbf {A} \wedge \mathbf {A} +{\frac {3}{2}}d\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} +{\frac {3}{5}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]\end{aligned}}}
where the curvature F is defined as
- {\displaystyle \mathbf {F} =d\mathbf {A} +\mathbf {A} \wedge \mathbf {A} .}
The general Chern–Simons form {\displaystyle \omega _{2k-1}} is defined in such a way that
- {\displaystyle d\omega _{2k-1}=\operatorname {Tr} (F^{k}),}
where the wedge product is used to define Fk. The right-hand side of this equation is proportional to the k-th Chern character of the connection {\displaystyle \mathbf {A} }.
In general, the Chern–Simons p-form is defined for any odd p.[5]
Application to physics
[edit ]In 1978, Albert Schwarz formulated Chern–Simons theory, early topological quantum field theory, using Chern-Simons forms.[6]
In the gauge theory, the integral of Chern-Simons form is a global geometric invariant, and is typically gauge invariant modulo addition of an integer.
See also
[edit ]References
[edit ]- ^ Freed, Daniel (April 2009) [January 15, 2009]. "Remarks on Chern–Simons theory". Bulletin of the American Mathematical Society . 46 (2): 221–254. Retrieved April 1, 2020.
- ^ Chern, S.-S.; Simons, J. (1974). "Characteristic forms and geometric invariants". Annals of Mathematics . Second Series. 99 (1): 48–69. doi:10.2307/1971013. JSTOR 1971013.
- ^ Chern, Shiing-Shen; Tian, G.; Li, Peter (1996). A Mathematician and His Mathematical Work: Selected Papers of S.S. Chern. World Scientific. ISBN 978-981-02-2385-4.
- ^ "Chern-Simons form in nLab". ncatlab.org. Retrieved May 1, 2020.
- ^ Moore, Greg (June 7, 2019). "Introduction To Chern-Simons Theories" (PDF). University of Texas. Retrieved June 7, 2019.
- ^ Schwartz, A. S. (1978). "The partition function of degenerate quadratic functional and Ray-Singer invariants". Letters in Mathematical Physics . 2 (3): 247–252. Bibcode:1978LMaPh...2..247S. doi:10.1007/BF00406412. S2CID 123231019.
Further reading
[edit ]- Bertlmann, Reinhold A. (2001). "Chern–Simons form, homotopy operator and anomaly". Anomalies in Quantum Field Theory (Revised ed.). Clarendon Press. pp. 321–341. ISBN 0-19-850762-3.