Chebyshev rational functions
Appearance
From Wikipedia, the free encyclopedia
For the Chebyshev rational functions used in the design of elliptic filters, see Elliptic rational functions.
In mathematics, the Chebyshev rational functions are a sequence of functions which are both rational and orthogonal. They are named after Pafnuty Chebyshev. A rational Chebyshev function of degree n is defined as:
- {\displaystyle R_{n}(x)\ {\stackrel {\mathrm {def} }{=}}\ T_{n}\left({\frac {x-1}{x+1}}\right)}
where Tn(x) is a Chebyshev polynomial of the first kind.
Properties
[edit ]Many properties can be derived from the properties of the Chebyshev polynomials of the first kind. Other properties are unique to the functions themselves.
Recursion
[edit ]- {\displaystyle R_{n+1}(x)=2\left({\frac {x-1}{x+1}}\right)R_{n}(x)-R_{n-1}(x)\quad {\text{for}},円n\geq 1}
Differential equations
[edit ]- {\displaystyle (x+1)^{2}R_{n}(x)={\frac {1}{n+1}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n+1}(x)-{\frac {1}{n-1}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n-1}(x)\quad {\text{for }}n\geq 2}
- {\displaystyle (x+1)^{2}x{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}R_{n}(x)+{\frac {(3x+1)(x+1)}{2}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n}(x)+n^{2}R_{n}(x)=0}
Orthogonality
[edit ]Defining:
- {\displaystyle \omega (x)\ {\stackrel {\mathrm {def} }{=}}\ {\frac {1}{(x+1){\sqrt {x}}}}}
The orthogonality of the Chebyshev rational functions may be written:
- {\displaystyle \int _{0}^{\infty }R_{m}(x),円R_{n}(x),円\omega (x),円\mathrm {d} x={\frac {\pi c_{n}}{2}}\delta _{nm}}
where cn = 2 for n = 0 and cn = 1 for n ≥ 1; δnm is the Kronecker delta function.
Expansion of an arbitrary function
[edit ]For an arbitrary function f(x) ∈ L2
ω the orthogonality relationship can be used to expand f(x):
- {\displaystyle f(x)=\sum _{n=0}^{\infty }F_{n}R_{n}(x)}
where
- {\displaystyle F_{n}={\frac {2}{c_{n}\pi }}\int _{0}^{\infty }f(x)R_{n}(x)\omega (x),円\mathrm {d} x.}
Particular values
[edit ]- {\displaystyle {\begin{aligned}R_{0}(x)&=1\\R_{1}(x)&={\frac {x-1}{x+1}}\\R_{2}(x)&={\frac {x^{2}-6x+1}{(x+1)^{2}}}\\R_{3}(x)&={\frac {x^{3}-15x^{2}+15x-1}{(x+1)^{3}}}\\R_{4}(x)&={\frac {x^{4}-28x^{3}+70x^{2}-28x+1}{(x+1)^{4}}}\\R_{n}(x)&=(x+1)^{-n}\sum _{m=0}^{n}(-1)^{m}{\binom {2n}{2m}}x^{n-m}\end{aligned}}}
Partial fraction expansion
[edit ]- {\displaystyle R_{n}(x)=\sum _{m=0}^{n}{\frac {(m!)^{2}}{(2m)!}}{\binom {n+m-1}{m}}{\binom {n}{m}}{\frac {(-4)^{m}}{(x+1)^{m}}}}
References
[edit ]- Guo, Ben-Yu; Shen, Jie; Wang, Zhong-Qing (2002). "Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval" (PDF). Int. J. Numer. Methods Eng. 53 (1): 65–84. Bibcode:2002IJNME..53...65G. CiteSeerX 10.1.1.121.6069 . doi:10.1002/nme.392. S2CID 9208244 . Retrieved 2006年07月25日.