Block LU decomposition
Find sources: "Block LU decomposition" – news · newspapers · books · scholar · JSTOR (June 2025) (Learn how and when to remove this message)
In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.[1]
Block LDU decomposition
[edit ]- {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&0\\CA^{-1}&I\end{pmatrix}}{\begin{pmatrix}A&0\0円&D-CA^{-1}B\end{pmatrix}}{\begin{pmatrix}I&A^{-1}B\0円&I\end{pmatrix}}}
Block Cholesky decomposition
[edit ]Consider a block matrix:
- {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I\\CA^{-1}\end{pmatrix}},円A,円{\begin{pmatrix}I&A^{-1}B\end{pmatrix}}+{\begin{pmatrix}0&0\0円&D-CA^{-1}B\end{pmatrix}},}
where the matrix {\displaystyle {\begin{matrix}A\end{matrix}}} is assumed to be non-singular, {\displaystyle {\begin{matrix}I\end{matrix}}} is an identity matrix with proper dimension, and {\displaystyle {\begin{matrix}0\end{matrix}}} is a matrix whose elements are all zero.
We can also rewrite the above equation using the half matrices:
- {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}A^{\frac {1}{2}}\\CA^{-{\frac {*}{2}}}\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\end{pmatrix}}+{\begin{pmatrix}0&0\0円&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\0円&Q^{\frac {*}{2}}\end{pmatrix}},}
where the Schur complement of {\displaystyle {\begin{matrix}A\end{matrix}}} in the block matrix is defined by
- {\displaystyle {\begin{matrix}Q=D-CA^{-1}B\end{matrix}}}
and the half matrices can be calculated by means of Cholesky decomposition or LDL decomposition. The half matrices satisfy that
- {\displaystyle {\begin{matrix}A^{\frac {1}{2}},円A^{\frac {*}{2}}=A;\end{matrix}}\qquad {\begin{matrix}A^{\frac {1}{2}},円A^{-{\frac {1}{2}}}=I;\end{matrix}}\qquad {\begin{matrix}A^{-{\frac {*}{2}}},円A^{\frac {*}{2}}=I;\end{matrix}}\qquad {\begin{matrix}Q^{\frac {1}{2}},円Q^{\frac {*}{2}}=Q.\end{matrix}}}
Thus, we have
- {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}=LU,}
where
- {\displaystyle LU={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&0\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\0円&0\end{pmatrix}}+{\begin{pmatrix}0&0\0円&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\0円&Q^{\frac {*}{2}}\end{pmatrix}}.}
The matrix {\displaystyle {\begin{matrix}LU\end{matrix}}} can be decomposed in an algebraic manner into
- {\displaystyle L={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&Q^{\frac {1}{2}}\end{pmatrix}}\mathrm {~~and~~} U={\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\0円&Q^{\frac {*}{2}}\end{pmatrix}}.}
See also
[edit ]References
[edit ]- ^ Gallivan, K. A.; Plemmons, R. J.; Sameh, A. H. (1990). "Parallel Algorithms for Dense Linear Algebra Computations". SIAM Review. 32 (1): 94–95. ISSN 0036-1445 . Retrieved 24 June 2025.