Jump to content
Wikipedia The Free Encyclopedia

Block LU decomposition

From Wikipedia, the free encyclopedia
Type of matrix factorization
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Block LU decomposition" – news · newspapers · books · scholar · JSTOR
(June 2025) (Learn how and when to remove this message)

In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.[1]

Block LDU decomposition

[edit ]
( A B C D ) = ( I 0 C A 1 I ) ( A 0 0 D C A 1 B ) ( I A 1 B 0 I ) {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&0\\CA^{-1}&I\end{pmatrix}}{\begin{pmatrix}A&0\0円&D-CA^{-1}B\end{pmatrix}}{\begin{pmatrix}I&A^{-1}B\0円&I\end{pmatrix}}} {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&0\\CA^{-1}&I\end{pmatrix}}{\begin{pmatrix}A&0\0円&D-CA^{-1}B\end{pmatrix}}{\begin{pmatrix}I&A^{-1}B\0円&I\end{pmatrix}}}

Block Cholesky decomposition

[edit ]

Consider a block matrix:

( A B C D ) = ( I C A 1 ) A ( I A 1 B ) + ( 0 0 0 D C A 1 B ) , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I\\CA^{-1}\end{pmatrix}},円A,円{\begin{pmatrix}I&A^{-1}B\end{pmatrix}}+{\begin{pmatrix}0&0\0円&D-CA^{-1}B\end{pmatrix}},} {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I\\CA^{-1}\end{pmatrix}},円A,円{\begin{pmatrix}I&A^{-1}B\end{pmatrix}}+{\begin{pmatrix}0&0\0円&D-CA^{-1}B\end{pmatrix}},}

where the matrix A {\displaystyle {\begin{matrix}A\end{matrix}}} {\displaystyle {\begin{matrix}A\end{matrix}}} is assumed to be non-singular, I {\displaystyle {\begin{matrix}I\end{matrix}}} {\displaystyle {\begin{matrix}I\end{matrix}}} is an identity matrix with proper dimension, and 0 {\displaystyle {\begin{matrix}0\end{matrix}}} {\displaystyle {\begin{matrix}0\end{matrix}}} is a matrix whose elements are all zero.

We can also rewrite the above equation using the half matrices:

( A B C D ) = ( A 1 2 C A 2 ) ( A 2 A 1 2 B ) + ( 0 0 0 Q 1 2 ) ( 0 0 0 Q 2 ) , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}A^{\frac {1}{2}}\\CA^{-{\frac {*}{2}}}\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\end{pmatrix}}+{\begin{pmatrix}0&0\0円&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\0円&Q^{\frac {*}{2}}\end{pmatrix}},} {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}A^{\frac {1}{2}}\\CA^{-{\frac {*}{2}}}\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\end{pmatrix}}+{\begin{pmatrix}0&0\0円&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\0円&Q^{\frac {*}{2}}\end{pmatrix}},}

where the Schur complement of A {\displaystyle {\begin{matrix}A\end{matrix}}} {\displaystyle {\begin{matrix}A\end{matrix}}} in the block matrix is defined by

Q = D C A 1 B {\displaystyle {\begin{matrix}Q=D-CA^{-1}B\end{matrix}}} {\displaystyle {\begin{matrix}Q=D-CA^{-1}B\end{matrix}}}

and the half matrices can be calculated by means of Cholesky decomposition or LDL decomposition. The half matrices satisfy that

A 1 2 A 2 = A ; A 1 2 A 1 2 = I ; A 2 A 2 = I ; Q 1 2 Q 2 = Q . {\displaystyle {\begin{matrix}A^{\frac {1}{2}},円A^{\frac {*}{2}}=A;\end{matrix}}\qquad {\begin{matrix}A^{\frac {1}{2}},円A^{-{\frac {1}{2}}}=I;\end{matrix}}\qquad {\begin{matrix}A^{-{\frac {*}{2}}},円A^{\frac {*}{2}}=I;\end{matrix}}\qquad {\begin{matrix}Q^{\frac {1}{2}},円Q^{\frac {*}{2}}=Q.\end{matrix}}} {\displaystyle {\begin{matrix}A^{\frac {1}{2}},円A^{\frac {*}{2}}=A;\end{matrix}}\qquad {\begin{matrix}A^{\frac {1}{2}},円A^{-{\frac {1}{2}}}=I;\end{matrix}}\qquad {\begin{matrix}A^{-{\frac {*}{2}}},円A^{\frac {*}{2}}=I;\end{matrix}}\qquad {\begin{matrix}Q^{\frac {1}{2}},円Q^{\frac {*}{2}}=Q.\end{matrix}}}

Thus, we have

( A B C D ) = L U , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}=LU,} {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}=LU,}

where

L U = ( A 1 2 0 C A 2 0 ) ( A 2 A 1 2 B 0 0 ) + ( 0 0 0 Q 1 2 ) ( 0 0 0 Q 2 ) . {\displaystyle LU={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&0\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\0円&0\end{pmatrix}}+{\begin{pmatrix}0&0\0円&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\0円&Q^{\frac {*}{2}}\end{pmatrix}}.} {\displaystyle LU={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&0\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\0円&0\end{pmatrix}}+{\begin{pmatrix}0&0\0円&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\0円&Q^{\frac {*}{2}}\end{pmatrix}}.}

The matrix L U {\displaystyle {\begin{matrix}LU\end{matrix}}} {\displaystyle {\begin{matrix}LU\end{matrix}}} can be decomposed in an algebraic manner into

L = ( A 1 2 0 C A 2 Q 1 2 )     a n d     U = ( A 2 A 1 2 B 0 Q 2 ) . {\displaystyle L={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&Q^{\frac {1}{2}}\end{pmatrix}}\mathrm {~~and~~} U={\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\0円&Q^{\frac {*}{2}}\end{pmatrix}}.} {\displaystyle L={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&Q^{\frac {1}{2}}\end{pmatrix}}\mathrm {~~and~~} U={\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\0円&Q^{\frac {*}{2}}\end{pmatrix}}.}

See also

[edit ]

References

[edit ]
  1. ^ Gallivan, K. A.; Plemmons, R. J.; Sameh, A. H. (1990). "Parallel Algorithms for Dense Linear Algebra Computations". SIAM Review. 32 (1): 94–95. ISSN 0036-1445 . Retrieved 24 June 2025.

AltStyle によって変換されたページ (->オリジナル) /