Bispherical coordinates
Bispherical coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that connects the two foci. Thus, the two foci {\displaystyle F_{1}} and {\displaystyle F_{2}} in bipolar coordinates remain points (on the {\displaystyle z}-axis, the axis of rotation) in the bispherical coordinate system.
Definition
[edit ]The most common definition of bispherical coordinates {\displaystyle (\tau ,\sigma ,\phi )} is
- {\displaystyle {\begin{aligned}x&=a\ {\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\cos \phi ,\\y&=a\ {\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\sin \phi ,\\z&=a\ {\frac {\sinh \tau }{\cosh \tau -\cos \sigma }},\end{aligned}}}
where the {\displaystyle \sigma } coordinate of a point {\displaystyle P} equals the angle {\displaystyle F_{1}PF_{2}} and the {\displaystyle \tau } coordinate equals the natural logarithm of the ratio of the distances {\displaystyle d_{1}} and {\displaystyle d_{2}} to the foci
- {\displaystyle \tau =\ln {\frac {d_{1}}{d_{2}}}}
The coordinates ranges are −∞ < {\displaystyle \tau } < ∞, 0 ≤ {\displaystyle \sigma } ≤ {\displaystyle \pi } and 0 ≤ {\displaystyle \phi } ≤ 2{\displaystyle \pi }.
Coordinate surfaces
[edit ]Surfaces of constant {\displaystyle \sigma } correspond to intersecting tori of different radii
- {\displaystyle z^{2}+\left({\sqrt {x^{2}+y^{2}}}-a\cot \sigma \right)^{2}={\frac {a^{2}}{\sin ^{2}\sigma }}}
that all pass through the foci but are not concentric. The surfaces of constant {\displaystyle \tau } are non-intersecting spheres of different radii
- {\displaystyle \left(x^{2}+y^{2}\right)+\left(z-a\coth \tau \right)^{2}={\frac {a^{2}}{\sinh ^{2}\tau }}}
that surround the foci. The centers of the constant-{\displaystyle \tau } spheres lie along the {\displaystyle z}-axis, whereas the constant-{\displaystyle \sigma } tori are centered in the {\displaystyle xy} plane.
Inverse formulae
[edit ]The formulae for the inverse transformation are:
- {\displaystyle {\begin{aligned}\sigma &=\arccos \left({\dfrac {R^{2}-a^{2}}{Q}}\right),\\\tau &=\operatorname {arsinh} \left({\dfrac {2az}{Q}}\right),\\\phi &=\arctan \left({\dfrac {y}{x}}\right),\end{aligned}}}
where {\textstyle R={\sqrt {x^{2}+y^{2}+z^{2}}}} and {\textstyle Q={\sqrt {\left(R^{2}+a^{2}\right)^{2}-\left(2az\right)^{2}}}.}
Scale factors
[edit ]The scale factors for the bispherical coordinates {\displaystyle \sigma } and {\displaystyle \tau } are equal
- {\displaystyle h_{\sigma }=h_{\tau }={\frac {a}{\cosh \tau -\cos \sigma }}}
whereas the azimuthal scale factor equals
- {\displaystyle h_{\phi }={\frac {a\sin \sigma }{\cosh \tau -\cos \sigma }}}
Thus, the infinitesimal volume element equals
- {\displaystyle dV={\frac {a^{3}\sin \sigma }{\left(\cosh \tau -\cos \sigma \right)^{3}}},円d\sigma ,円d\tau ,円d\phi }
and the Laplacian is given by
- {\displaystyle {\begin{aligned}\nabla ^{2}\Phi ={\frac {\left(\cosh \tau -\cos \sigma \right)^{3}}{a^{2}\sin \sigma }}&\left[{\frac {\partial }{\partial \sigma }}\left({\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}{\frac {\partial \Phi }{\partial \sigma }}\right)\right.\\[8pt]&{}\quad +\left.\sin \sigma {\frac {\partial }{\partial \tau }}\left({\frac {1}{\cosh \tau -\cos \sigma }}{\frac {\partial \Phi }{\partial \tau }}\right)+{\frac {1}{\sin \sigma \left(\cosh \tau -\cos \sigma \right)}}{\frac {\partial ^{2}\Phi }{\partial \phi ^{2}}}\right]\end{aligned}}}
Other differential operators such as {\displaystyle \nabla \cdot \mathbf {F} } and {\displaystyle \nabla \times \mathbf {F} } can be expressed in the coordinates {\displaystyle (\sigma ,\tau )} by substituting the scale factors into the general formulae found in orthogonal coordinates.
Applications
[edit ]The classic applications of bispherical coordinates are in solving partial differential equations, e.g., Laplace's equation, for which bispherical coordinates allow a separation of variables. However, the Helmholtz equation is not separable in bispherical coordinates. A typical example would be the electric field surrounding two conducting spheres of different radii.
References
[edit ]Bibliography
[edit ]- Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Parts I and II. New York: McGraw-Hill. pp. 665–666, 1298–1301.
- Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 182. LCCN 59014456.
- Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 113. ISBN 0-86720-293-9.
- Moon PH, Spencer DE (1988). "Bispherical Coordinates (η, θ, ψ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer Verlag. pp. 110–112 (Section IV, E4Rx). ISBN 0-387-02732-7.