Jump to content
Wikipedia The Free Encyclopedia

Bidirectional map

From Wikipedia, the free encyclopedia
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations . Please help improve this article by introducing more precise citations. (April 2015) (Learn how and when to remove this message)

In computer science, a bidirectional map is an associative data structure in which the ( k e y , v a l u e ) {\displaystyle (key,value)} {\displaystyle (key,value)} pairs form a one-to-one correspondence. Thus the binary relation is functional in each direction: each v a l u e {\displaystyle value} {\displaystyle value} can also be mapped to a unique k e y {\displaystyle key} {\displaystyle key}. A pair ( a , b ) {\displaystyle (a,b)} {\displaystyle (a,b)} thus provides a unique coupling between a {\displaystyle a} {\displaystyle a} and b {\displaystyle b} {\displaystyle b} so that b {\displaystyle b} {\displaystyle b} can be found when a {\displaystyle a} {\displaystyle a} is used as a key and a {\displaystyle a} {\displaystyle a} can be found when b {\displaystyle b} {\displaystyle b} is used as a key.

Mathematically, a bidirectional map can be defined a bijection f : X Y {\displaystyle f:X\to Y} {\displaystyle f:X\to Y} between two different sets of keys X {\displaystyle X} {\displaystyle X} and Y {\displaystyle Y} {\displaystyle Y} of equal cardinality, thus constituting an injective and surjective function:

{ x , x X , f ( x ) = f ( x ) x = x y Y , x X : y = f ( x ) f 1 ( x ) {\displaystyle {\begin{cases}&\forall x,x'\in X,f(x)=f(x')\Rightarrow x=x'\\&\forall y\in Y,\exists x\in X:y=f(x)\end{cases}}\Rightarrow \exists f^{-1}(x)} {\displaystyle {\begin{cases}&\forall x,x'\in X,f(x)=f(x')\Rightarrow x=x'\\&\forall y\in Y,\exists x\in X:y=f(x)\end{cases}}\Rightarrow \exists f^{-1}(x)}

[edit ]


Stub icon

This algorithms or data structures-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /