Bayes classifier
| Part of a series on |
| Bayesian statistics |
|---|
| Posterior = Likelihood ×ばつ Prior ÷ Evidence |
| Background |
| Model building |
| Posterior approximation |
| Estimators |
| Evidence approximation |
| Model evaluation |
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classes using the same set of features.[1]
Definition
[edit ]Suppose a pair {\displaystyle (X,Y)} takes values in {\displaystyle \mathbb {R} ^{d}\times \{1,2,\dots ,K\}}, where {\displaystyle Y} is the class label of an element whose features are given by {\displaystyle X}. Assume that the conditional distribution of X, given that the label Y takes the value r is given by {\displaystyle (X\mid Y=r)\sim P_{r}\quad {\text{for}}\quad r=1,2,\dots ,K} where "{\displaystyle \sim }" means "is distributed as", and where {\displaystyle P_{r}} denotes a probability distribution.
A classifier is a rule that assigns to an observation X=x a guess or estimate of what the unobserved label Y=r actually was. In theoretical terms, a classifier is a measurable function {\displaystyle C:\mathbb {R} ^{d}\to \{1,2,\dots ,K\}}, with the interpretation that C classifies the point x to the class C(x). The probability of misclassification, or risk, of a classifier C is defined as {\displaystyle {\mathcal {R}}(C)=\operatorname {P} \{C(X)\neq Y\}.}
The Bayes classifier is {\displaystyle C^{\text{Bayes}}(x)={\underset {r\in \{1,2,\dots ,K\}}{\operatorname {argmax} }}\operatorname {P} (Y=r\mid X=x).}
In practice, as in most of statistics, the difficulties and subtleties are associated with modeling the probability distributions effectively—in this case, {\displaystyle \operatorname {P} (Y=r\mid X=x)}. The Bayes classifier is a useful benchmark in statistical classification.
The excess risk of a general classifier {\displaystyle C} (possibly depending on some training data) is defined as {\displaystyle {\mathcal {R}}(C)-{\mathcal {R}}(C^{\text{Bayes}}).} Thus this non-negative quantity is important for assessing the performance of different classification techniques. A classifier is said to be consistent if the excess risk converges to zero as the size of the training data set tends to infinity.[2]
Considering the components {\displaystyle x_{i}} of {\displaystyle x} to be mutually independent, we get the naive Bayes classifier, where {\displaystyle C^{\text{Bayes}}(x)={\underset {r\in \{1,2,\dots ,K\}}{\operatorname {argmax} }}\operatorname {P} (Y=r)\prod _{i=1}^{d}P_{r}(x_{i}).}
Properties
[edit ]Proof that the Bayes classifier is optimal and Bayes error rate is minimal proceeds as follows.
Define the variables: Risk {\displaystyle R(h)}, Bayes risk {\displaystyle R^{*}}, all possible classes to which the points can be classified {\displaystyle Y=\{0,1\}}. Let the posterior probability of a point belonging to class 1 be {\displaystyle \eta (x)=Pr(Y=1|X=x)}. Define the classifier {\displaystyle {\mathcal {h}}^{*}}as {\displaystyle {\mathcal {h}}^{*}(x)={\begin{cases}1&{\text{if }}\eta (x)\geqslant 0.5,\0円&{\text{otherwise.}}\end{cases}}}
Then we have the following results:
- {\displaystyle R(h^{*})=R^{*}}, i.e. {\displaystyle h^{*}} is a Bayes classifier,
- For any classifier {\displaystyle h}, the excess risk satisfies {\displaystyle R(h)-R^{*}=2\mathbb {E} _{X}\left[|\eta (x)-0.5|\cdot \mathbb {I} _{\left\{h(X)\neq h^{*}(X)\right\}}\right]}
- {\displaystyle R^{*}=\mathbb {E} _{X}\left[\min(\eta (X),1-\eta (X))\right]}
- {\displaystyle R^{*}={\frac {1}{2}}-{\frac {1}{2}}\mathbb {E} [|2\eta (X)-1|]}
Proof of (a): For any classifier {\displaystyle h}, we have {\displaystyle {\begin{aligned}R(h)&=\mathbb {E} _{XY}\left[\mathbb {I} _{\left\{h(X)\neq Y\right\}}\right]\\&=\mathbb {E} _{X}\mathbb {E} _{Y|X}[\mathbb {I} _{\left\{h(X)\neq Y\right\}}]\\&=\mathbb {E} _{X}[\eta (X)\mathbb {I} _{\left\{h(X)=0\right\}}+(1-\eta (X))\mathbb {I} _{\left\{h(X)=1\right\}}]\end{aligned}}} where the second line was derived through Fubini's theorem
Notice that {\displaystyle R(h)} is minimised by taking {\displaystyle \forall x\in X}, {\displaystyle h(x)={\begin{cases}1&{\text{if }}\eta (x)\geqslant 1-\eta (x),\0円&{\text{otherwise.}}\end{cases}}}
Therefore the minimum possible risk is the Bayes risk, {\displaystyle R^{*}=R(h^{*})}.
Proof of (b): {\displaystyle {\begin{aligned}R(h)-R^{*}&=R(h)-R(h^{*})\\&=\mathbb {E} _{X}[\eta (X)\mathbb {I} _{\left\{h(X)=0\right\}}+(1-\eta (X))\mathbb {I} _{\left\{h(X)=1\right\}}-\eta (X)\mathbb {I} _{\left\{h^{*}(X)=0\right\}}-(1-\eta (X))\mathbb {I} _{\left\{h^{*}(X)=1\right\}}]\\&=\mathbb {E} _{X}[|2\eta (X)-1|\mathbb {I} _{\left\{h(X)\neq h^{*}(X)\right\}}]\\&=2\mathbb {E} _{X}[|\eta (X)-0.5|\mathbb {I} _{\left\{h(X)\neq h^{*}(X)\right\}}]\end{aligned}}}
Proof of (c):
{\displaystyle {\begin{aligned}R(h^{*})&=\mathbb {E} _{X}[\eta (X)\mathbb {I} _{\left\{h^{*}(X)=0\right\}}+(1-\eta (X))\mathbb {I} _{\left\{h*(X)=1\right\}}]\\&=\mathbb {E} _{X}[\min(\eta (X),1-\eta (X))]\end{aligned}}}
Proof of (d): {\displaystyle {\begin{aligned}R(h^{*})&=\mathbb {E} _{X}[\min(\eta (X),1-\eta (X))]\\&={\frac {1}{2}}-\mathbb {E} _{X}[\max(\eta (X)-1/2,1/2-\eta (X))]\\&={\frac {1}{2}}-{\frac {1}{2}}\mathbb {E} [|2\eta (X)-1|]\end{aligned}}}
General case
[edit ]The general case that the Bayes classifier minimises classification error when each element can belong to either of n categories proceeds by towering expectations as follows. {\displaystyle {\begin{aligned}\mathbb {E} _{Y}(\mathbb {I} _{\{y\neq {\hat {y}}\}})&=\mathbb {E} _{X}\mathbb {E} _{Y|X}\left(\mathbb {I} _{\{y\neq {\hat {y}}\}}|X=x\right)\\&=\mathbb {E} \left[\Pr(Y=1|X=x)\mathbb {I} _{\{{\hat {y}}=2,3,\dots ,n\}}+\Pr(Y=2|X=x)\mathbb {I} _{\{{\hat {y}}=1,3,\dots ,n\}}+\dots +\Pr(Y=n|X=x)\mathbb {I} _{\{{\hat {y}}=1,2,3,\dots ,n-1\}}\right]\end{aligned}}}
This is minimised by simultaneously minimizing all the terms of the expectation using the classifier {\displaystyle h(x)=k,\quad \arg \max _{k}Pr(Y=k|X=x)} for each observation x.
See also
[edit ]References
[edit ]- ^ Devroye, L.; Gyorfi, L. & Lugosi, G. (1996). A probabilistic theory of pattern recognition. Springer. ISBN 0-3879-4618-7.
- ^ Farago, A.; Lugosi, G. (1993). "Strong universal consistency of neural network classifiers" . IEEE Transactions on Information Theory. 39 (4): 1146–1151. doi:10.1109/18.243433.